1)

$$\frac{d\pi}{dt} = -\pi + y + y^{2}$$

$$\frac{dy}{dt} = \pi - \pi y$$
(a) (nitical ptr: $\pi(1, 2) = 0 = 1$ $\pi = 0$ or $y = 1$

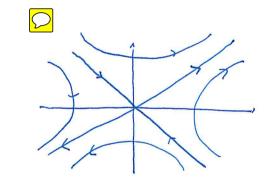
$$\chi = 0 =) \quad j^{2} + j = 0 =) \quad (0, 0) , (0, -1)$$

 $y = 1 =) \quad \chi = 2 \quad u^{2} \quad (2, 1) \qquad [2]$

(b) (i) At
$$(0,0)$$
: the kinearized rate has matrix $\begin{bmatrix} -1 & q \\ q & 0 \end{bmatrix}$
eigenvalues: $\frac{1}{2}(\frac{1+1}{2}-\frac{1+1}{2})$
 $\frac{1}{2} = -\frac{1+1}{2}$,
of opposite signs, \therefore unstable, seddle pt. [2]

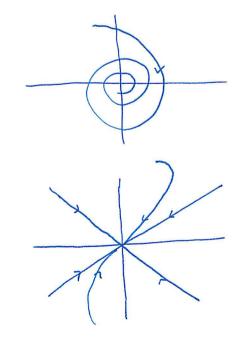
(ii) At
$$(0, 4)$$
: $X = H$ $Y = y + 1$ if $Y - 1 = \frac{1}{2}$
The translated system is $\frac{dx}{dt} = -X + Y - 1 + (y - 1)^2 = -X - Y + Y^2$
 $\frac{dY}{dt} = X - X (Y - 1) = 2X - XY$
With wather $\begin{bmatrix} -1 & -1 \\ 2 & 0 \end{bmatrix}$, $L(ywwelvel) : \lambda (\lambda + 1) + 2 = 0$
 $= \lambda = -\frac{1 + \sqrt{3} - 2}{2}$
both complex, negative real part [2]
 \therefore stable, spinal pt.

1. (b) (ii) at (21),
$$x = 7.62$$
 $Y = 7-4$
translated Instrum is $\frac{dx}{dt} = -(x+2) + Y + 1 + (T+1)^2 = -x + 3Y + Y^2$
 $\frac{dY}{dt} = +(x+2) - (x+2)(T+1) = -2T - xY$
6. In wathin $\begin{bmatrix} -1 & 3\\ 0 & -2 \end{bmatrix}$, expression $\lambda = -1, -2$
stable, node. [2]



1 (1)

(i)



 $C^{(i)}$

[2]

(b)
$$y_2 dx + (x^2y - x_2) dy + (x^2 - x_3) dz = 0$$
 (3)

theat x as constant first, set

$$\chi^{2}(y dy + 2dz) - \chi(z dy + ydz) = 0$$

$$=) \chi(y^{2} + z^{2}) - 2yz = f(\pi) \longrightarrow (1)$$
Now put $y = 0$ and set $\chi^{2} 2 dz = 0$

$$(1h (H)) =) z = b \longrightarrow (1)$$

$$f(x) = \chi^{2} - 1 (1y)$$

$$f(x) = \chi^{2} - 2yz = b^{2}\chi$$

$$\therefore so(1), \chi(y^{2} + z^{2}) - 2yz = b^{2}\chi$$

$$(4)$$

i. competible.

4. (a)
$$22 = ax^{2} + by^{2} - ab$$

(b) $2p = 2ax = 0 = \frac{p}{x}$
(and $22 = 2by = 0 = \frac{2}{y}$
(c) $10E$ is $2x = px + 2y - \frac{pq}{yy}$
(2)

(b) let
$$b: ax^{2} + by^{2} - ab - 22 = 0$$
 be the siven family
 $ba: a x^{2} - b = 0$
 $ba: y^{2} - a = 0$
(2)

in as y' ban' in the given family yields $x^{2}y^{2} + x^{2}y^{2} - x^{2}y^{2} = 22$ =) $2 = \frac{1}{2}x^{2}y^{2}$ 5.7

(beck:
$$P = xy^2$$
 $\xi = x^2y^2$
and $Px + \xi y - \frac{1\xi}{\mu y} = x^2y^2 + x^2y^2 - \frac{x^2y^2}{\mu y} = x^2y^2 + x^2y^2 - \frac{x^2y^2}{\mu y} = x^2y^2 + x^2y^2$

[5] Let (1. 9 -1) denote the direction of the normal at a pt (a,b,c) on the given runface. The log of the normal is $\frac{x \cdot a}{a} = \frac{y \cdot b}{4} = \frac{z \cdot c}{-1} \left(-\frac{z \cdot a y}{2}\right)$ => n = R +12 7= 1+91 2= C-2

For pts A, B, the conception doing I'm are given by the nuts 2, 2 Ar 3 (a+12) + 2 (b+q2) + (c-1) = 6 $\lambda^{2}(3i + 2i + 1) + \lambda(6ai + 4bi - 2c) + *$ =) 5. het $d_1 + d_2 = -\frac{(6\alpha p + 4bq - 2c)}{3p^2 + 2q^2 + 4}$ (A) [2]

But 2=0 bijects the line AD, ... the 2-couch of A and B must add up to 6. (21+22 =0) $c - \lambda_{1} + c - \lambda_{2} = 0$ -) $\lambda_1 + \lambda_2 = 2c$ \longrightarrow (5) (2) =) 1) =) 2c - 6ap - 4bg = 2c(31 + 29 + 1) (A) and =) c (3 p + 2 2) + 3ap + 2 b 2 = 0

ile, me 2 (3pt + 29t) + 3p m + 24y = 0 2[2]

6. (a)
$$f: pxy + qy^2 - 2y_2 - p^2 = 0$$

(onviden
$$\frac{dy}{h} = \frac{d\rho}{-(h_{x} + 1h_{z})}$$
 [1]
=) $\frac{dy}{y^{2}} = \frac{d\rho}{-(\rho_{y} + \rho_{z}(zy))}$
=) $\frac{dy}{y} = \frac{d\rho}{\rho}$
=) $\rho = ay$
 $p = ay$
 $p = a^{2}y^{2} + 2yz - ayy^{2}$
 y^{2}
 $= a^{2} - ay + 2z$
 y^{2}
(1)

(on i i d en p d n + q d n) = d 2

=)
$$a y dn + (a^2 - an + \frac{2}{y}) dy = dz - (1)$$

theat y an constant and get ay
$$dx = dy$$

=) $ay - 2 = g(y) \longrightarrow \textcircled{(2)}$

Put
$$x=a$$
 in (1) and $get = \frac{22}{5} dy = d2$
=> $by^2 = 2$ (B)
Putting $x=a$ in (B) in $yet = g(y) = a^2y - 2$
 $= a^2y - by^2$ (from (D))

is the negation plan integral with
$$a_{21}\gamma - 2 = a^{2}\gamma - b\gamma^{2}$$

=) $2 = a_{22}\gamma + b\gamma^{2} - a^{2}\gamma$. [2]

(b)
$$y(2 + hy)^2 = 4(2 + y^2) \longrightarrow 0$$

$$y=1 = 3$$
 $2-k = \frac{1}{4} (k+h)^{2}$
=) $2 = k + \frac{1}{4} (n+h)^{2}$, $y=1$ is k (unve on (2))

For interaction of O and 2= any +by -a y to be tangential, are need equal racts in the 17^M

$$k + \frac{1}{4} (k+h)^{2} = a \times + b - a^{2}$$

i, $n^{2} + 2x h - 4a \times + h^{2} + 4(a^{2} + h - b) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} + 4(a^{2} + h - b)) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} + 4(a^{2} + h - b)) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} + 4(a^{2} + h - b)) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} + 4(a^{2} + h - b)) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} + 4(a^{2} + h - b)) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} + 4(a^{2} + h - b)) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} + 4(a^{2} + h - b)) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} + 4(a^{2} + h - b)) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} + 4(a^{2} + h - b)) = 0$

i. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(a^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(h^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(h^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(h^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(h^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(h^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(h^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(h^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(h^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2} - 4(h^{2} - 4(h^{2} + h - b)) = 0$

j. $(2h \cdot 4a)^{2}$

7.
$$(D^2 + 2DD^2 - 3D^2) = 2x(3-3)$$

(i.
$$q_{p} (n+3n') (n-n') = 0$$

=) $2 = q (n+n') + q_{2} (3n-n')$ [2]

1.1:
$$kf = (D + 3D') 2 = 2,$$

 $S_{u_3} = (D - D')^2, = 2nc n = 3)$
=) $\frac{dn}{1} = \frac{dn}{-1} = \frac{d2}{2n(n+3)}$

=)
$$x + y = a$$
, $dz_1 = 2x + a dx$
=) $z_1 = a x^2$
=) $z_1 = (x + a) x^2$ [2]

- General sola: 3x3 + Q(2x+7) + P3 (3x.7) [2]

8.
$$R = 1$$
 S=0 T_{e-4x}^{t}
 $R\lambda^{2} + S\lambda + T = 0$
=) $\lambda^{2} - 4x^{2} = 0$
=) $\lambda = \pm 2n$ [2]
 $dy = \pm 2x = -2ieth substitution$

$$5 = 3 + \lambda^2$$
 $\eta = 3 - \lambda^2$ [1]

$$N_{nn} = \frac{\partial^2}{\partial \mathbf{x}} = \frac{\partial^2}{\partial \mathbf{x}} + \frac{\partial^2}{\partial n} (2n)$$
 (1)

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial g} + \frac{\partial z}{\partial n}$$

$$\frac{\partial z}{\partial y} = \frac{\partial^2 z}{\partial g^2} + \frac{\partial^2 z}{\partial q^2} + 2 \frac{\partial^2 z}{\partial g \partial n}$$
(1)

$$4\pi^{2} \frac{22\pi}{24^{2}} - 4\pi^{2} \frac{2^{12}}{24^{2}} - 8\pi^{2} \frac{2^{12}}{24^{2}} + 2\frac{2\pi}{24} - 2\frac{2\pi}{4\pi}$$

$$- 4\pi^{2} \frac{2\pi}{24^{2}} - 4\pi^{2} \frac{2^{12}}{24^{2}} - 8\pi^{2} \frac{2^{12}}{22\pi} = \frac{1}{\pi} \cdot \left(\frac{2\pi}{24}(\pi) - \frac{2\pi}{24}(\pi)\right)$$

$$=) \frac{2^{2}}{24^{2}} = 0$$

$$=) \frac{2^{2}}{24^{2}} = 0$$

$$=) \frac{2^{2}}{24^{2}} = 4(\pi)$$

$$=) \frac{2}{2\pi} = 4(\pi)$$

$$=) \frac{2}{2\pi} = 4(\pi)$$

$$=(\pi + \pi^{2}) + 4\pi((\pi + \pi^{2}))$$

$$=(\pi + \pi^{2}) + 4\pi((\pi + \pi^{2}))$$

$$(2)$$

9.			
Put n	= × (x/ Y(3)		
the given e	gh becomes		
	$\frac{1}{\chi} \frac{d^2 x}{d \chi^2} = -\frac{1}{\gamma}$	$\frac{d^2 Y}{dq^2} = \left(\frac{1}{2}\right)^2$	ay) [2]
$\frac{d^2 x}{dr^2}$	r) x = 0	$\frac{d^2 x}{dy^2} - \frac{1}{2} Y = 0$	
2 <0	2 = 0		9 20
ray asm	X = Azt	0	So let dam >0
X = Am cur hmx + Bm min)	1mm 2 2 (0, 7) = 0		
$\mathcal{U}(0, \gamma) = 0 \forall \gamma \leq n_1 = 1 A_{\gamma}$	n=0 2 2 12, 7	A=0 170 *74 n12	
ひ(カケ、カ)この マ いくてく いいと	=) (m= 0	- 240	
- 7 40	(1)	(r)	

Now
$$X = A_m \cos mu + B_m \operatorname{Aub} mu$$

 $h(0, 7) = 0 =) \quad A_m = 0$
For nontrivial roll, $B_m \neq 0$: $h(\pi_{1/2}, 7) = 0$
 $=) \quad \chi = A_m \cosh m_{7+} B_m \operatorname{Aub} h^m$
 $h(\pi_{1/2}, 0) = 0 =) \quad A_m = 0$
 $=) \quad \operatorname{Aub} \left(\operatorname{Im} \pi_{1/2} \right) = 0$
 $=) \quad \operatorname{Aub} \left(\operatorname{Im} \pi_{1/2} \right) = 0$
 $=) \quad \operatorname{Aub} \left(\operatorname{Im} \pi_{1/2} \right) = 0$

From
$$u(x, \pi_{12}) = und x a get$$

 $I = B_m$ nimm x swin $h = \pi_{12} = und x$ $T1$
 $u_{1ing} = \int_{0}^{\pi_{12}} num m num x = \pi_{14} \delta m n$, as get
 $B_m = 0 = m \neq i$
 $B_m = \frac{1}{nm h = \pi}$ (2)