IWASAWA λ-INVARIANTS OF p-ADIC MEASURES ON \mathbb{Z}_{p}^{n} AND THEIR Γ-TRANSFORMS

Rupam Barman and Anupam Saikia

Abstract

In [2], we proved a relation between the λ-invariants of a p-adic measure on \mathbb{Z}_{p}^{n} and its Γ-transform under a strong condition. In this paper, we determine the relation without imposing any condition. We also determine p-adic properties of certain Mahler coefficients by exploiting some combinatorial identities.

Key Words: p-adic measure, Γ-transform, Iwasawa invariants, Mahler coefficients. 2000 Mathematics Classification Numbers: Primary 11F85, 11S80

1. Introduction

The theory of Γ-transform is very useful in studying the Iwasawa invariants of imaginary abelian number fields. In [8], Sinnott gave an elegant new proof of the theorem of Ferrero and Washington that the Iwasawa μ-invariant is zero for the cyclotomic \mathbb{Z}_{p}-extension of any abelian number field. Sinnott further showed how to compute the μ-invariant of the Γ-transform of a rational function. In [4], Katz showed that the p adic L-functions of a totally real number field K do indeed arise from roughly rational function measures on \mathbb{Z}_{p}^{d}, where $d=[K: \mathbb{Q}]$.

It was Kida who first obtained a relation between the λ-invariant of a measure on \mathbb{Z}_{p} and its Γ-transform [5]. In our paper [2], exploiting certain combinatorial identities we determined a relation between the λ-invariants of a p-adic measure on \mathbb{Z}_{p}^{n} and its Γ transform for any $n \geq 1$ under some restrictive hypothesis. In this paper, we generalize the results of [2].

Let p be a fixed odd prime. We have $\mathbb{Z}_{p}^{\times}=V \times U$, where V is the group of $(p-1)$ st roots of unity in \mathbb{Z}_{p} and $U=1+p \mathbb{Z}_{p}$. Then the projections from \mathbb{Z}_{p}^{\times}onto V and U are denoted by ω and $<>$, respectively. By u, we will denote a fixed topological generator of U. Then there is an isomorphism $\phi: \mathbb{Z}_{p} \rightarrow U$ given by $\phi(y)=u^{y}$. Let $n \geq 1$. By fixing a topological generator $u_{i}(1 \leq i \leq n)$ for each copy of \mathbb{Z}_{p} in \mathbb{Z}_{p}^{n}, we obtain an isomorphism $\phi^{n}: \mathbb{Z}_{p}^{n} \rightarrow U^{n}$ given by $\left(y_{1}, \ldots, y_{n}\right) \mapsto\left(u_{1}^{y_{1}}, \ldots, u_{n}^{y_{n}}\right)$.

Let \mathcal{O} be the ring of integers in a finite extension of \mathbb{Q}_{p} with a local parameter π. It is well-known that there is an isomorphism between the ring Λ_{n} of \mathcal{O}-valued measures on \mathbb{Z}_{p}^{n} under convolution and the power series ring $\mathcal{O}\left[\left[T_{1}-1, \ldots, T_{n}-1\right]\right]$. Explicitly, for $x \in \mathbb{Z}_{p}$, if we put

$$
T^{x}=\sum_{m=0}^{\infty}\binom{x}{m}(T-1)^{m} \in \mathcal{O}[[T-1]],
$$

then the unique power series $\widehat{\alpha}\left(T_{1}, \ldots, T_{n}\right)$ associated with α is given by

$$
\begin{align*}
\widehat{\alpha}\left(T_{1}, \ldots, T_{n}\right)= & \int_{\mathbb{Z}_{n}^{n}} T_{1}^{x_{1}} \cdots T_{n}^{x_{n}} d \alpha\left(x_{1}, \ldots, x_{n}\right) \\
= & \sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty}\left(\int_{\mathbb{Z}_{p}^{n}}\binom{x_{1}}{m_{1}} \cdots\binom{x_{n}}{m_{n}} d \alpha\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \times\left(T_{1}-1\right)^{m_{1}} \cdots\left(T_{n}-1\right)^{m_{n}} . \tag{1.1}
\end{align*}
$$

If $a=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{Z}_{p}^{\times}\right)^{n}$, we denote by $\alpha \circ a$ the measure on \mathbb{Z}_{p}^{n} given by $\alpha \circ a\left(A_{1} \times\right.$ $\left.\cdots \times A_{n}\right)=\alpha\left(a_{1} A_{1} \times \cdots \times a_{n} A_{n}\right)$, where A_{i} are compact open subsets of \mathbb{Z}_{p}. Also, for compact open subsets A_{i} of \mathbb{Z}_{p}, we let $\left.\alpha\right|_{A}$ denote the measure obtained by restricting α to A and extending by 0 , where $A=A_{1} \times \cdots \times A_{n}$.

The Γ-transform of α is defined as a function of the p-adic variables s_{1}, \ldots, s_{n} given by

$$
\begin{aligned}
\Gamma_{\alpha}\left(s_{1}, \ldots, s_{n}\right) & =\int_{\left(\mathbb{Z}_{p}^{\times}\right)^{n}}<x_{1}>^{s_{1}} \cdots<x_{n}>^{s_{n}} d \alpha\left(x_{1}, \ldots, x_{n}\right) \\
& =\sum_{\eta_{1} \in V} \cdots \sum_{\eta_{n} \in V_{U^{n}}} \int<\eta_{1} x_{1}>^{s_{1}} \cdots<\eta_{n} x_{n}>^{s_{n}} d \alpha\left(\eta_{1} x_{1}, \ldots, \eta_{n} x_{n}\right) \\
& =\int_{U^{n}} x_{1}^{s_{1}} \cdots x_{n}^{s_{n}} d \beta\left(x_{1}, \ldots, x_{n}\right),
\end{aligned}
$$

where $d \alpha\left(\eta_{1} x_{1}, \ldots, \eta_{n} x_{n}\right)$ denotes $d\left(\alpha \circ\left(\eta_{1}, \ldots, \eta_{n}\right)\right)\left(x_{1}, \ldots, x_{n}\right)$ and

$$
\begin{equation*}
\beta=\left.\sum_{\eta_{1} \in V} \cdots \sum_{\eta_{n} \in V}\left(\alpha \circ\left(\eta_{1}, \ldots, \eta_{n}\right)\right)\right|_{U^{n}} \tag{1.2}
\end{equation*}
$$

a measure on U^{n}. By the isomorphism $\phi^{n}: \mathbb{Z}_{p}^{n} \rightarrow U^{n}$, one can transport the measure β on U^{n} to a measure $\tilde{\beta}$ on \mathbb{Z}_{p}^{n}. It is clear from (1.1) that the power series $\widehat{\tilde{\beta}}$ associated with $\tilde{\beta}$ interpolates the Γ-transform of α as

$$
\begin{equation*}
\Gamma_{\alpha}\left(s_{1}, \ldots, s_{n}\right)=\int_{\mathbb{Z}_{p}^{n}}\left(u_{1}^{s_{1}}\right)^{y_{1}} \cdots\left(u_{n}^{s_{n}}\right)^{y_{n}} d \tilde{\beta}\left(y_{1}, \ldots, y_{n}\right)=\hat{\tilde{\beta}}\left(u_{1}^{s_{1}}, \ldots, u_{n}^{s_{n}}\right) \tag{1.3}
\end{equation*}
$$

The measure β on U^{n} can be extended by 0 to \mathbb{Z}_{p}^{n}, and the associated power series of the extended measure will be denoted by $\widehat{\beta}$.

2. Iwasawa invariants

The Iwasawa μ - and λ - invariants of a power series

$$
F(T)=\sum_{n=0}^{\infty} a_{n}(T-1)^{n} \in \mathcal{O}[[T-1]]
$$

are defined by

$$
\begin{aligned}
& \mu(F(T))=\min \left\{\operatorname{ord}_{\pi}\left(a_{n}\right): n \geq 0\right\} \\
& \lambda(F(T))=\min \left\{n: \operatorname{ord}_{\pi}\left(a_{n}\right)=\mu(F(T))\right\}
\end{aligned}
$$

Analogously, in [2] we defined the Iwasawa μ - and λ - invariants of a power series

$$
F\left(T_{1}, \ldots, T_{n}\right)=\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} a_{m_{1}, \ldots, m_{n}}\left(T_{1}-1\right)^{m_{1}} \cdots\left(T_{n}-1\right)^{m_{n}}
$$

in $\mathcal{O}\left[\left[T_{1}-1, \ldots, T_{n}-1\right]\right]$ as follows:

$$
\begin{aligned}
& \mu\left(F\left(T_{1}, \ldots, T_{n}\right)\right)=\min \left\{\operatorname{ord}_{\pi}\left(a_{m_{1}, \ldots, m_{n}}\right): m_{i} \geq 0 \quad \forall i\right\} \\
& \lambda\left(F\left(T_{1}, \ldots, T_{n}\right)\right)=\min \left\{m_{1}+\cdots+m_{n}: \operatorname{ord}_{\pi}\left(a_{m_{1}, \ldots, m_{n}}\right)=\mu\left(F\left(T_{1}, \ldots, T_{n}\right)\right)\right\}
\end{aligned}
$$

Definition 1. Let $\alpha \in \Lambda_{n}$. The Iwasawa μ - and λ - invariants of α are defined as $\mu\left(\widehat{\alpha}\left(T_{1}, \ldots, T_{n}\right)\right)$ and $\lambda\left(\widehat{\alpha}\left(T_{1}, \ldots, T_{n}\right)\right)$ respectively. Similarly, the Iwasawa invariants of Γ_{α} are defined as the corresponding invariants of the power series $\widehat{\tilde{\beta}}\left(T_{1}, \ldots, T_{n}\right)$.

Let $\alpha \in \Lambda_{n}$. In case of $n=1$, Sinnott in his paper [8] proved that $\mu\left(\Gamma_{\alpha}\right)=$ $\mu\left(\alpha^{*}+\alpha^{*} \circ(-1)\right)$, if $\widehat{\alpha}(T)$ is a rational function of T. Here $\alpha^{*}=\left.\alpha\right|_{\mathbb{Z}_{p}^{\times}}$. It is known that $\mu\left(\Gamma_{\alpha}\right)=\mu(\beta)$ (see for example $[3,8]$). It is easy to prove that $\mu\left(\Gamma_{\alpha}\right)=\mu(\beta)$ for any $n \geq 1$ (see [2, Lemma 2.2]). It would be interesting to extend it to study λ-invariants. The case $n=1$ has been studied in $[3,5,6,7]$. The aim of this paper is to prove the following main result.

Theorem 2.1. Let α be an \mathcal{O}-valued measure on \mathbb{Z}_{p}^{n}. Define a measure β on U^{n} by (1.2) and let $\widehat{\beta}\left(T_{1}, \ldots, T_{n}\right)$ be the power series associated with the measure β on U^{n} extended to \mathbb{Z}_{p}^{n} by zero. Then $\lambda(\beta)=p \lambda\left(\Gamma_{\alpha}\right)$.

Remark 2.2. The above theorem was proved under some restrictive hypothesis in [2, Lemma 2.2].

3. Mahler coefficients and proof of the Theorem 2.1

A crucial ingredient in our proof of theorem 2.1 is a relation (see lemma 3.1) between coefficients of the power series $\widehat{\beta}$ and $\widehat{\tilde{\beta}}$ via Mahler coefficients. A classical theorem of Mahler states that any continuous function $f: \mathbb{Z}_{p} \rightarrow \mathcal{O}$ can be written uniquely in the form

$$
\begin{equation*}
f(x)=\sum_{j=0}^{\infty} a_{j}(f)\binom{x}{j}, \tag{3.1}
\end{equation*}
$$

where $a_{j}(f) \in \mathcal{O}, a_{j}(f) \rightarrow 0$ as $j \rightarrow \infty$. In fact

$$
\begin{equation*}
a_{j}(f)=\sum_{i=0}^{j}(-1)^{j-i}\binom{j}{i} f(i) . \tag{3.2}
\end{equation*}
$$

Furthermore, if $f: \mathbb{Z}_{p}^{n} \rightarrow \mathcal{O}$ is continuous, we may write (by repeated application of (3.1))

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} a_{m_{1}, \ldots, m_{n}}(f)\binom{x_{1}}{m_{1}} \cdots\binom{x_{n}}{m_{n}} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{m_{1}, \ldots, m_{n}}(f)= & \sum_{j_{1}=0}^{m_{1}} \cdots \sum_{j_{n}=0}^{m_{n}}(-1)^{m_{1}-j_{1}} \cdots(-1)^{m_{n}-j_{n}}\binom{m_{1}}{j_{1}} \cdots\binom{m_{n}}{j_{n}} \\
& \times f\left(j_{1}, \ldots, j_{n}\right) \in \mathcal{O} .
\end{aligned}
$$

The constants $a_{m_{1}, \ldots, m_{n}}(f)$ are called the Mahler coefficients of the function f.
Let us consider the continuous functions $f_{m}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ and $f_{m_{1}, \ldots, m_{n}}: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}$ defined by

$$
f_{m}(x)=\binom{u^{x}}{m} \quad \text { and } \quad f_{m_{1}, \ldots, m_{n}}\left(x_{1}, \ldots, x_{n}\right)=f_{m_{1}}\left(x_{1}\right) \cdots f_{m_{n}}\left(x_{n}\right) .
$$

Now, if $a_{m}\left(f_{k}\right)$ are the Mahler coefficients of $f_{k}(x)=\binom{u^{x}}{k}=\sum_{m=0}^{\infty} a_{m}\left(f_{k}\right)\binom{x}{m}$, then

$$
\begin{equation*}
a_{j_{1}, \ldots, j_{n}}\left(f_{m_{1}, \ldots, m_{n}}\right)=a_{j_{1}}\left(f_{m_{1}}\right) \cdots a_{j_{n}}\left(f_{m_{n}}\right) \tag{3.4}
\end{equation*}
$$

Suppose

$$
\widehat{\beta}\left(T_{1}, \ldots, T_{n}\right)=\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} b_{m_{1}, \ldots, m_{n}}\left(T_{1}-1\right)^{m_{1}} \cdots\left(T_{n}-1\right)^{m_{n}}
$$

and

$$
\widehat{\tilde{\beta}}\left(T_{1}, \ldots, T_{n}\right)=\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} g_{m_{1}, \ldots, m_{n}}\left(T_{1}-1\right)^{m_{1}} \cdots\left(T_{n}-1\right)^{m_{n}} .
$$

Then we have the following important lemma (see lemma 2.3 in [2]) which relates the coefficients of $\widehat{\beta}\left(T_{1}, \ldots, T_{n}\right), \widehat{\tilde{\beta}}\left(T_{1}, \ldots, T_{n}\right)$, and certain Mahler coefficients.
Lemma 3.1. Modulo $p^{n+k_{1}+\cdots+k_{n}} \mathcal{O}$, we have

$$
m_{1}!\cdots m_{n}!b_{m_{1}, \ldots, m_{n}} \equiv m_{1}!\cdots m_{n}!\sum_{j_{1}=0}^{k_{1}} \cdots \sum_{j_{n}=0}^{k_{n}} g_{j_{1}, \ldots, j_{n}} a_{j_{1}, \ldots, j_{n}}\left(f_{m_{1}, \ldots, m_{n}}\right)
$$

where $a_{j_{1}, \ldots, j_{n}}\left(f_{m_{1}, \ldots, m_{n}}\right)$ are the Mahler coefficients of $f_{m_{1}, \ldots, m_{n}}\left(x_{1}, \ldots, x_{n}\right)$.
Note that when $\operatorname{ord}_{p}\left(m_{1}!\cdots m_{n}!\right) \leq k_{1}+\cdots+k_{n}$, then

$$
\begin{equation*}
b_{m_{1}, \ldots, m_{n}} \equiv \sum_{j_{1}=0}^{k_{1}} \cdots \sum_{j_{n}=0}^{k_{n}} g_{j_{1}, \ldots, j_{n}} a_{j_{1}, \ldots, j_{n}}\left(f_{m_{1}, \ldots, m_{n}}\right) \quad\left(\bmod p^{n} \mathcal{O}\right) \tag{3.5}
\end{equation*}
$$

In order to prove the theorem 2.1, we need to investigate p-adic properties of the Mahler coefficients $a_{j_{1}, \ldots, j_{n}}\left(f_{m_{1}, \ldots, m_{n}}\right)$. We shall now study these coefficients using certain combinatorial identities.

Let us fix a topological generator $u=1+t_{1} p+t_{2} p^{2}+\cdots$ of $1+p \mathbb{Z}_{p}$. Hence t_{1} is a unit. In fact t_{1} is an integer lying between 1 and $p-1$. We now state a binomial
expansion in the following lemma. One can find a simple proof using the fact that $(1+T)^{p^{i}} \equiv\left(1+T^{p^{i}}\right)(\bmod p)$ for $i \geq 1$.

Lemma 3.2. For $n \geq 1$, we have

$$
\begin{equation*}
(1+T)^{u^{n}} \equiv(1+T)\left(1+T^{p}\right)^{n t_{1}}\left(1+T^{p^{2}}\right)^{a_{n, 2}+n t_{2}} \cdots\left(1+T^{p^{j}}\right)^{a_{n, j}+n t_{j}} \cdots(\bmod p), \tag{3.6}
\end{equation*}
$$ where $a_{n, j} \geq 0$ for all $j \geq 2$.

In the following lemma, we prove another binomial expansion.
Lemma 3.3. For $k \geq 1$, let $m=l_{k} p^{k}+l_{k-1} p^{k-1}+\cdots+l_{1} p+l_{0}$, where $0 \leq l_{i}<p$ for all $i=0,1, \ldots, k$. Then we have

$$
\begin{align*}
(1+T)^{u^{m}} \equiv & (1+T)\left(1+T^{p}\right)^{l_{0} t_{1}}\left(1+T^{p^{2}}\right)^{l_{1} t_{1}+l_{0} t_{2}+a_{m, 2}}\left(1+T^{p^{3}}\right)^{l_{2} t_{1}+l_{1} t_{2}+l_{0} t_{3}+a_{m, 3}} \cdots \\
& \left(1+T^{p^{k}}\right)^{l_{k-1} t_{1}+l_{k-2} t_{2}+\cdots+l_{1} t_{k-1}+l_{0} t_{k}+a_{m, k}}\left(1+T^{p^{k+1}}\right)^{l_{k} t_{1}+l_{k-1} t_{2}+\cdots+l_{1} t_{k}+l_{0} t_{k+1}+a_{m, k+1}} \\
& \cdots\left(1+T^{p^{k+j}}\right)^{l_{k} t_{j}+l_{k-1} t_{j+1}+\cdots+l_{1} t_{k+j-1}+l_{0} t_{k+j}+a_{m, k+j}} \cdots(\bmod p), \tag{3.7}
\end{align*}
$$

where $a_{m, j} \geq 0$ for all $j \geq 2$.
Furthermore, for $j \geq 0$,

$$
\begin{equation*}
a_{l_{k+j}} p^{k+j}+l_{k+j-1} p^{k+j-1}+\cdots+l_{1} p+l_{0}, k+1=a_{l_{k-1}} p^{k-1}+\cdots+l_{1} p+l_{0}, k+1 \tag{3.8}
\end{equation*}
$$

Proof. One can easily deduce (3.7) from (3.6). We now give a proof of (3.8). Let $m_{1}=l_{k-1} p^{k-1}+\cdots+l_{1} p+l_{0}$. ¿From (3.7), the exponent of ($1+T^{p^{k+1}}$) in the expansion of $(1+T)^{u^{m_{1}}}$ and $(1+T)^{u^{l_{k+j} j^{k+j}+\cdots+l_{k} p^{k}+m_{1}}}$ are, respectively

$$
\begin{gather*}
l_{k-1} t_{2}+\cdots+l_{1} t_{k}+l_{0} t_{k+1}+a_{m_{1}, k+1} \tag{3.9}\\
l_{k} t_{1}+l_{k-1} t_{2}+\cdots+l_{1} t_{k}+l_{0} t_{k+1}+a_{l_{k+j} p^{k+j}+\cdots+l_{k} p^{k}+m_{1}, k+1} \tag{3.10}
\end{gather*}
$$

Again,

$$
u^{l_{k+j} p^{k+j}+\cdots+l_{k} p^{k}}=1+l_{k} t_{1} p^{k+1}+\cdots
$$

Hence,

$$
(1+T)^{u^{l_{k+j} p^{k+j}+\cdots+l_{k} p^{k}}} \equiv(1+T)\left(1+T^{p^{k+1}}\right)^{l_{k} t_{1}} \cdots(\bmod p) .
$$

This implies that modulo p, the exponent of $\left(1+T^{p^{k+1}}\right)$ in the expansion of $(1+$ $T)^{u^{l_{k+j} p^{k+j}+\cdots+l_{k} p^{k}+m_{1}}}$ is

$$
\begin{equation*}
l_{k} t_{1}+l_{k-1} t_{2}+\cdots+l_{1} t_{k}+l_{0} t_{k+1}+a_{m_{1}, k+1} . \tag{3.11}
\end{equation*}
$$

¿From (3.10) and (3.11), we complete the proof of the lemma.
In [1], we proved the following two theorems.
Theorem 3.4. For non-negative integers n, t, k, we have

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}\binom{t i+k}{n}=t^{n} \tag{3.12}
\end{equation*}
$$

Theorem 3.5. For non-negative integers n, t, k, j with $n \geq j \geq 1$, we have

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}\binom{t i+k}{n-j}=0 \tag{3.13}
\end{equation*}
$$

We now state a result from [9].
Result 3.6. Suppose that $n \geq m$ satisfy

$$
\begin{aligned}
n & =a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{k} p^{k} \\
m & =b_{0}+b_{1} p+b_{2} p^{2}+\cdots+b_{k} p^{k}
\end{aligned}
$$

where $a_{j}, b_{j} \in\{0,1, \ldots, p-1\}$. Then

$$
\binom{n}{m} \equiv\binom{a_{0}}{b_{0}}\binom{a_{1}}{b_{1}} \cdots\binom{a_{k}}{b_{k}}(\bmod p) .
$$

Lemma 3.7. Let $l, m \geq 0$. Suppose that $l=l_{0}+l_{1} p+\cdots+l_{k} p^{k}$ with $0 \leq l_{i}<p$ for $i=1,2, \ldots, k$. Then

$$
a_{l}\left(f_{m}\right) \equiv \begin{cases}0 \bmod p, & \text { if } m<p l \\ t_{1}^{l_{0}+l_{1}+\cdots+l_{k}} \bmod p, & \text { if } m=p l .\end{cases}
$$

Proof. Since $m<p l$, we can write $m=m_{0}+m_{1} p+\cdots+m_{k+1} p^{k+1}$, where $0 \leq m_{i}<p$. From (3.2), we have

$$
\begin{align*}
& a_{l_{0}+l_{1} p+\cdots+l_{k} p^{k}}\left(f_{m}\right) \\
& =\sum_{j=0}^{l_{0}+l_{1} p+\cdots+l_{k} p^{k}}(-1)^{l_{0}+l_{1} p+\cdots+l_{k} p^{k}-j}\binom{l_{0}+l_{1} p+\cdots+l_{k} p^{k}}{j}\binom{u^{j}}{m} . \tag{3.14}
\end{align*}
$$

But, $\binom{u^{j}}{m}$ is the coefficient of T^{m} in the expansion of $(1+T)^{u^{j}}$. Clearly from (3.7), the coefficient of T^{m} modulo p in $(1+T)^{u^{j}}$ is zero if $1<m_{0}<p$. Also, the coefficients of T^{m} modulo p in $(1+T)^{u^{j}}$ are equal for $m_{0}=0,1$. So, we can assume that $m_{0}=0$. Letting $j=i_{k} p^{k}+i_{k-1} p^{k-1}+\cdots+i_{1} p+i_{0}$ and using (3.7) and then (3.8), we find that modulo p,

$$
\begin{aligned}
& \binom{u^{j}}{m} \\
\equiv & \binom{i_{0} t_{1}}{m_{1}}\binom{i_{1} t_{1}+i_{0} t_{2}+a_{j, 2}}{m_{2}} \times \cdots \times\binom{ i_{k} t_{1}+i_{k-1} t_{2}+\cdots+i_{1} t_{k}+i_{0} t_{k+1}+a_{j, k+1}}{m_{k+1}} \\
\equiv & \binom{i_{0} t_{1}}{m_{1}}\binom{i_{1} t_{1}+i_{0} t_{2}+a_{i_{0}, 2}}{m_{2}} \times \cdots \times\binom{ i_{k} t_{1}+\cdots+i_{1} t_{k}+i_{0} t_{k+1}+a_{i_{k-1} p^{k-1}+\cdots+i_{0}, k+1}}{m_{k+1}}
\end{aligned}
$$

We now use result 2.6 to simplify (3.14) and deduce that

$$
\begin{align*}
& a_{l_{0}+l_{1} p+\cdots+l_{k} p^{k}}\left(f_{\left.m_{1} p+\cdots+m_{k+1} p^{k+1}\right)}\right. \\
& \equiv \sum_{i_{0}=0}^{l_{0}}(-1)^{l_{0}-i_{0}}\binom{l_{0}}{i_{0}}\binom{i_{0} t_{1}}{m_{1}} \times\left[\sum_{i_{1}=0}^{l_{1}}(-1)^{l_{1}-i_{1}}\binom{l_{1}}{i_{1}}\binom{i_{1} t_{1}+i_{0} t_{2}+a_{i_{0}, 2}}{m_{2}}\right. \\
& \times\left[\sum_{i_{2}=0}^{l_{2}}(-1)^{l_{2}-i_{2}}\binom{l_{2}}{i_{2}}\binom{i_{2} t_{1}+i_{1} t_{2}+i_{0} t_{3}+a_{i_{1} p+i_{0}, 3}}{m_{3}} \times \cdots \times\left[\sum_{i_{k}=0}^{l_{k}}(-1)^{l_{k}-i_{k}}\binom{l_{k}}{i_{k}}\right.\right. \\
& \left.\left.\times\binom{ i_{k} t_{1}+i_{k-1} t_{2}+\cdots+i_{1} t_{k}+i_{0} t_{k+1}+a_{i_{k-1} p^{k-1}+\cdots+i_{1} p+i_{0}, k+1}}{m_{k+1}}\right] \cdots\right] . \tag{3.15}
\end{align*}
$$

If $m<p l$, then there exists j such that $m_{j}<l_{j-1}$ with $j \in\{0,1, \ldots, k+1\}$ and $m_{i}=l_{i-1}$ for $i>j$. Using (3.12) in (3.15), we obtain

$$
\begin{align*}
& a_{l_{0}+l_{1} p+\cdots+l_{k} p^{k}}\left(f_{m_{1} p+\cdots+m_{k+1} p^{k+1}}\right) \\
& \equiv t_{1}^{l_{k}+\cdots+l_{j}}\left[\sum_{i_{0}=0}^{l_{0}}(-1)^{l_{0}-i_{0}}\binom{l_{0}}{i_{0}}\binom{i_{0} t_{1}}{m_{1}} \times\left[\sum_{i_{1}=0}^{l_{1}}(-1)^{l_{1}-i_{1}}\binom{l_{1}}{i_{1}}\binom{i_{1} t_{1}+a_{i_{0}, 2}+i_{0} t_{2}}{m_{2}}\right.\right. \\
& \times\left[\sum_{i_{2}=0}^{l_{2}}(-1)^{l_{2}-i_{2}}\binom{l_{2}}{i_{2}}\binom{i_{2} t_{1}+i_{1} t_{2}+a_{i_{1} p+i_{0}, 3}+i_{0} t_{3}}{m_{3}} \times \cdots \times\left[\sum_{i_{j-1}=0}^{l_{j-1}}(-1)^{l_{j-1}-i_{j-1}}\binom{l_{j-1}}{i_{j-1}}\right.\right. \\
& \left.\left.\times\binom{ i_{j-1} t_{1}+\cdots+i_{1} t_{j-1}+a_{i_{j-2} p^{j-2}+\cdots+i_{1} p+i_{0}, j}+i_{0} t_{j}}{m_{j}}\right] \cdots\right] . \tag{3.16}
\end{align*}
$$

But, $m_{j}=l_{j-1}-\left(l_{j-1}-m_{j}\right)$ with $l_{j-1}-m_{j}>0$. Using (3.13), we have

$$
a_{l_{0}+l_{1} p+\cdots+l_{k} p^{k}}\left(f_{m_{1} p+\cdots+m_{k+1} p^{k+1}}\right) \equiv 0(\bmod p) .
$$

If $m=p l$, then $m_{i}=l_{i-1}$ for all $i=1, \ldots, k+1$. Hence from (3.12), we have

$$
a_{l_{0}+l_{1} p+\cdots+l_{k} p^{k}}\left(f_{l_{0} p+l_{1} p^{2}+\cdots+l_{k} p^{k+1}}\right) \equiv t_{1}^{l_{0}+l_{1}+\cdots+l_{k}}(\bmod p) .
$$

This completes the proof of the theorem.
Lemma 3.8. Let $j_{i}, m_{i} \geq 0$ for $i=1, \ldots, n$. Then

$$
a_{j_{1}, \ldots, j_{n}}\left(f_{m_{1}, \ldots, m_{n}}\right) \equiv \begin{cases}0 \bmod p, & \text { if } m_{i}<p j_{i} \text { for some } i ; \\ a \operatorname{p-adic} \text { unit } \bmod p, & \text { if } m_{i}=p j_{i} \text { for all } i .\end{cases}
$$

Proof. The proof follows from the lemma 3.7 and the fact that

$$
a_{j_{1}, \ldots, j_{n}}\left(f_{m_{1}, \ldots, m_{n}}\right)=\prod_{i=1}^{n} a_{j_{i}}\left(f_{m_{i}}\right) .
$$

Proof of Theorem 2.1: Recall that

$$
\widehat{\beta}\left(T_{1}, \ldots, T_{n}\right)=\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} b_{m_{1}, \ldots, m_{n}}\left(T_{1}-1\right)^{m_{1}} \cdots\left(T_{n}-1\right)^{m_{n}}
$$

and

$$
\widehat{\widetilde{\beta}}\left(T_{1}, \ldots, T_{n}\right)=\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} g_{m_{1}, \ldots, m_{n}}\left(T_{1}-1\right)^{m_{1}} \cdots\left(T_{n}-1\right)^{m_{n}}
$$

We know that $\mu\left(\Gamma_{\alpha}\right)=\mu(\beta)$, that is, $\mu\left(\widehat{\tilde{\beta}}\left(T_{1}, \ldots, T_{n}\right)\right)=\mu(\beta)$. For any power series $F\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{O}\left[\left[T_{1}-1, \ldots, T_{n}-1\right]\right]$, if $\pi \mid F\left(T_{1}, \ldots, T_{n}\right)$ then $\lambda\left(\pi^{-1} F\left(T_{1}, \ldots, T_{n}\right)\right)=$ $\lambda\left(F\left(T_{1}, \ldots, T_{n}\right)\right)$. So, we may assume that $\mu\left(\widehat{\tilde{\beta}}\left(T_{1}, \ldots, T_{n}\right)\right)=0$.

Suppose that $\lambda\left(\Gamma_{\alpha}\right)=k$, that is, $\lambda\left(\widehat{\tilde{\beta}}\left(T_{1}, \ldots, T_{n}\right)\right)=k$. If $k=0$, then $g_{0, \ldots, 0}$ and $b_{0, \ldots, 0}$ are units in \mathcal{O} and hence $\lambda\left(\Gamma_{\alpha}\right)=0=p \lambda(\beta)$. If $k \geq 1$, then there exists a partition $k_{1}+\cdots+k_{n}$ of k such that $g_{k_{1}, \ldots, k_{n}}$ is a unit in \mathcal{O} and for every $m_{i} \geq 0$ satisfying $m_{1}+\cdots+m_{n}<k, g_{m_{1}, \ldots, m_{n}} \equiv 0(\bmod \pi)$. Let $r<p k$. Let $r=r_{1}+\cdots+r_{n}$ and $k=i_{1}+\cdots+i_{n}$ be any partitions of r and k, respectively. If $l_{i}=\operatorname{ord}_{p}\left(r_{i}!\right)$, then from (3.5) we get

$$
\begin{equation*}
b_{r_{1}, \ldots, r_{n}} \equiv \sum_{j_{1}=0}^{l_{1}} \cdots \sum_{j_{n}=0}^{l_{n}} g_{j_{1}, \ldots, j_{n}} a_{j_{1}, \ldots, j_{n}}\left(f_{r_{1}, \ldots, r_{n}}\right)(\bmod \pi) . \tag{3.17}
\end{equation*}
$$

If $j_{1}+\cdots+j_{n} \geq k$, then $p j_{1}+\cdots+p j_{n} \geq p k>r$. Hence $r_{i}<p j_{i}$ for some i and lemma 3.8 implies that

$$
\begin{equation*}
a_{j_{1}, \ldots, j_{n}}\left(f_{r_{1}, \ldots, r_{n}}\right) \equiv 0(\bmod \pi) . \tag{3.18}
\end{equation*}
$$

Again if $j_{1}+\cdots+j_{n}<k$, then $g_{j_{1}, \ldots, j_{n}} \equiv 0(\bmod \pi)$. Thus if $r<p k$, then (3.18) and (3.17) imply that

$$
\begin{equation*}
b_{r_{1}, \ldots, r_{n}} \equiv 0(\bmod \pi) \tag{3.19}
\end{equation*}
$$

for every partition $r=r_{1}+\cdots+r_{n}$.
Now let $r=p k$. Consider the partition $k_{1}+\cdots+k_{n}$ of k. Then $p k_{1}+\cdots+p k_{n}$ is a partition of $p k$ such that $\operatorname{ord}_{p}\left(\left(p k_{i}\right)!\right)=\operatorname{ord}_{p}\left(r_{i}!\right)=l_{i} \geq k_{i}$. From (3.5) and lemma 3.8, we find that

$$
\begin{align*}
b_{p k_{1}, \ldots, p k_{n}} & \equiv \sum_{j_{1}=0}^{l_{1}} \cdots \sum_{j_{n}=0}^{l_{n}} g_{j_{1}, \ldots, j_{n}} a_{j_{1}, \ldots, j_{n}}\left(f_{p k_{1}, \ldots, p k_{n}}\right) \\
& \equiv g_{k_{1}, \ldots, k_{n}} a_{k_{1}, \ldots, k_{n}}\left(f_{p k_{1}, \ldots, p k_{n}}\right)(\bmod \pi), \tag{3.20}
\end{align*}
$$

which is a unit in \mathcal{O}. This proves that $\lambda(\beta)=p k_{1}+\cdots+p k_{n}=p k=p \lambda\left(\hat{\tilde{\beta}}\left(T_{1}, \ldots, T_{n}\right)\right)$. This completes the proof of the main theorem.

4. Acknowledgment

We are grateful to the anonymous referee for his/her helpful comments. We are also grateful to Dipendra Prasad for his encouragements and supports. The first author is thankful to the University Grants Commission, Government of India for supporting a part of the work under the project $37-539 / 2009(\mathrm{SR})$. He is also partially supported by a grant "Teacher Fellowship" from National Board for Higher Mathematics, Government of India.

References

[1] R. Barman, On p-adic properties of certain Mahler coefficients, J. Ramanujan Math. Soc. 26, No. 3, 195-202 (2011).
[2] R. Barman and A. Saikia, Iwasawa λ-invariants and Γ-Transforms of p-adic measures on \mathbb{Z}_{p}^{n}, Int. J. Number Theory 6, No. 8, 1819-1829 (2010).
[3] N. Childress, λ-invariants and Γ-transforms, Manuscripta math. 64, 359-375 (1989).
[4] N. Katz, Another look at p-adic L-functions for totally real fields, Math. Ann. 255, 33-43 (1981).
[5] Y. Kida, The λ-invraints of p-adic measures on \mathbb{Z}_{p} and $1+q \mathbb{Z}_{p}$, Sci. Rep. Kanazawa Univ. 30, 33-38 (1986).
[6] A. Saikia and R. Barman, Iwasawa λ-invariants and Γ-Transforms, J. Ramanujan Math. Soc. 24, No. 2, 199-209 (2009).
[7] J. Satoh, Iwasawa 入-invariants of Γ-Transforms, Journal of Number Theory, 41, 98-101 (1992).
[8] W. Sinnott, On the μ-invariant of the Γ-transform of a rational function, Invent. Math. 75, 273-282 (1984).
[9] R. Stanley, Enumerative Combinatorics-I, Wadsworth, Montercy (1986).
Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, INDIA

E-mail address: rupamb@tezu.ernet.in
Department of Mathematics, Indian Institute of Technology, Guwahati-781039, AsSAM, INDIA

E-mail address: a.saikia@iitg.ernet.in

