PhD course Structure and detailed Syllabi


Semester (July – November and December – April)





Quantum Mechanics



Statistical Mechanics



Experimental and Numerical Techniques








                                                                                                                                                                                 Total Credit=26



PhD Course Syllabus for One semester Course structure



PH 702                Electrodynamics                           (3-0-0-6)





Quantum Mechanics, Electrodynamics, Statistical Mechanics and Experimental and Numerical Techniques are the basic topics routinely applied to almost all areas of research in Physics. Students, who join IIT Guwahati for the Ph.D. program in Physics, are expected to have sound knowledge of these subjects, before they start working on their research topic. Main goal of these courses is to make them able to apply the physical concepts in realistic situations. Strong emphasis will be given in discussing problems related to various topics in the syllabus.


Course contents:


Maxwell’s equations, Green function formalism and boundary value problems in electrostatics and magnetostatics, Poynting’s theorem and Gauge transformations, Electromagnetic waves in dielectric and conducting media; Waveguide and resonant cavity; Radiation: Retarded potential, Field and radiation of a localized Oscillating source, Electric dipole radiation, Center-fed linear antenna, Lienard-Wiechert potential, radiation by nonrelativistic and relativistic charges, angular distribution of radiation; Scattering: scattering at long wavelengths, Thomson and Rayleigh scattering, Born approximation; Relativistic electrodynamics: covariant formalism of Maxwell’s equations.


Texts / References:


1.         J. D. Jackson, Classical Electrodynamics, John Wiley, 1999.

2.         L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Butterworth, 1995.

3.         H. J. W. Muller Kirsten, Electrodynamics, World Scientific, 2011.

4.         G. S. Smith, Classical Electromagnetic Radiation, Cambridge, 1997.



PH 703      Quantum Mechanics                             (3-0-0-6)


Solution of Schrodinger equation for potential problems: free particle in a spherical cavity, delta potential, tunnelling through a barrier, harmonic oscillator, charged particle in a uniform magnetic field; Ahranov–Bohm Effect; Orbital and spin angular momentum, addition of angular momenta, Clebsch-Gordon coefficients, Hydrogen atom, applications of time independent and dependent perturbation theory, scattering theory, Born approximation, Klein-Gordon and Dirac equations.




1.         F. Scheck, Quantum Physics, Springer, 2009.

2.         V.B. Berestetskii, E.M. Lifshitz and L. P. Pitaevskii, Quantum Electrodynamics, 2nd Edn., Elsevier Butterworth Heinemann, 2008.

3.         L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd Edn., Elsevier Butterworth Heinemann, 2005.

4.         D. J. Griffiths, Introduction to Quantum Mechanics, Pearson Education, 2005.

5.         K. Gottfried and T-M Yan, Quantum Mechanics: Fundamentals, 2nd Edn., Springer, 2003.

6.         J. J. Sakurai, Modern Quantum Mechanics, Pearson Education, 2002.

7.         J.J. Sakurai, Advanced Quantum Mechanics, Pearson Education, 2002.

8.         W. Greiner, Quantum mechanics: Special chapters, Springer, 1997.

9.         R. Shankar, Principles of Quantum Mechanics, Springer,  2nd Edn., 1994.



PH 704      Statistical Mechanics                   (3-0-0-6)


Ensemble theory, Quantum Ideal gases, Maxwell Boltzmann, Fermi-Dirac, and Bose-Einstein statistics; Application of different statistics: Bose-Einstein condensation, free Fermi gas, statistical equilibrium of white dwarf stars; Classical transport theory, Boltzmann transport equation; Simple interacting systems: Ising model, Cluster expansions, Transfer matrix; Critical phenomena: Ginzburg-Landau density functional, Critical exponents and scaling relations.


Texts / References:


1.         R. K. Pathria and P.D. Beale, Statistical Mechanics, Academic Press,3rd edn., 2011.

2.         K. Huang, Statistical Mechanics, John Wiley Asia, 2000.

3.         W. Greiner, L. Neise, and H. Stocker, Thermodynamics and Statistical Mechanics, Springer, 1995.

4.         M. Plishke and B. Bergersen, Equilibrium Statistical Mechanics, World Scientific, 2nd Edn., 1994.

5.         D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, 1987.



PH 706      Experimental and Numerical Techniques  (2-1-2-8)


Sensors and Instruments: Electric, magnetic, and optical sensors; Signal averaging and lock-in detection, LASERs, constant current and voltage sources; Measurement of Physical properties, generation and measurement of vacuum; Analytical Instruments: X-ray diffractometer, spectrometers, microscopes, optical spectrum analyser; Error analysis: Root finding methods, linear and non-linear curve fitting; Eigenvalue problem; Numerical integration and differentiation; Ordinary differential equations; Partial differential equations: elliptic, hyperbolic, parabolic equations.


Laboratory component: Physical parameter measurement using sensors/instruments. Demonstration and data collection of various analytical instruments.


Seminar Component: Students will have to present seminar on selected topics towards the latter part of the course.


Texts / References:


1.         R. H. Landau, M. J. Paez and C. C. Bordeianu, Computational Physics: Problem Solving with Computer, Wiley Vch Verlag Gmbh & Co. KGaA, 2007.

2.         T. Pang, An Introduction to Computational Physics, Cambridge University Press, 2006.

3.         S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, Tata McGraw Hill, 2002.

4.         A. D. Helfrick and W.D.Cooper, Modern Electronic Instrumentation and Measurement Techniques, PHI, 1996.

6.         J. P. Bentley, Principles of measurement systems, Pearson Education Ltd, England, 2005.

7.         A. S. Morris and R. Langari, Measurement and Instrumentation: Theory and Application, Academic Press, London, 2012.

8.         A. Ghatak and K.Thyagarajan, Optical Electronics, Cambridge University Press, 1991.

9.         D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Saunders Coll. Publ., 1998.