Course Structure and Syllabus for Engineering Physics

 

(to be applicable from 2013 batch onwards)

 

Course No.

Course Name

L

T

P

C

 

Course No.

Course Name

L

T

P

C

Semester - 1

 

Semester -2

CH101

Chemistry

3

1

0

8

 

BT101

Modern Biology

3

0

0

6

CH110

Chemistry Laboratory

0

0

3

3

 

CS 101

Introduction to Computing

3

0

0

6

EE101

Electrical Sciences

3

1

0

8

 

CS110

Computing Laboratory

0

0

3

3

MA101

Mathematics - I

3

1

0

8

 

EE102

Basic Electronics Laboratory

0

0

3

3

ME 110/     PH 110

Workshop /              

Physics Laboratory

0

0

3

3

 

MA102

Mathematics - II

3

1

0

8

ME 111

Engineering Drawing

1

0

3

5

 

ME101

Engineering Mechanics

3

1

0

8

PH101

Physics - I

2

1

0

6

 

PH102

Physics - II

2

1

0

6

SA 101

Physical Training - I

0

0

2

0

 

PH 110/

ME 110

Physics Laboratory/ Workshop

0

0

3

3

 

SA 102

Physical Training - II

0

0

2

0

11

4

9

39

 

 

 

 

 

14

3

9

43

Semester 3

 

Semester 4

MA201

Mathematics - III

3

1

0

8

 

PH202

Electromagnetics

3

1

0

8

EE220

Signals, Systems and Networks

3

1

0

8

 

PH204

Quantum  Mechanics

3

1

0

8

PH201

Advanced Classical Mechanics

3

1

0

8

 

PH206

Analog & Digital Electronics

3

0

0

6

PH203

Semiconductor Devices

3

0

0

6

 

BT205

Biophysics

2

1

0

6

PH205

Heat & Thermodynamics

2

1

0

6

 

HS2xx

HSS Elective - II

3

0

0

6

HS2xx

HSS elective - I

3

0

0

6

 

PH210

Electronics Lab-I

0

0

4

4

NCC/NSO/COS

0

0

2

0

 

NCC/NSO/COS

0

0

2

0

17

4

0

42

 

 

 

14

3

4

38

Semester 5

 

Semester 6

PH301

Microprocessor architecture and Programming

3

0

0

6

 

PH302

Solid State Physics

2

1

0

6

PH303

Atomic and Molecular Spectroscopy

3

0

0

6

 

PH304

Engineering Optics

3

0

0

6

PH305

Computational Physics

2

0

2

6

 

PH306

Nuclear Science & Engineering

3

0

0

6

PH307

Statistical Mechanics

2

1

0

6

 

PH308

Measurement Techniques

2

0

2

6

HS3xx

HSS Elective - III

3

0

0

6

 

XXxxx

Open Elective - I

3

0

0

6

PH311

Electronics Lab-II

0

0

6

6

 

PH320

General Physics Lab

0

0

6

6

13

1

8

36

 

 

 

13

1

8

36

Semester 7

 

Semester 8

PH413

Materials Science & Engineering

3

0

0

6

 

PH414

Nanoelectronics & Nanophotonics

3

0

0

6

PH415

Lasers & Photonics

3

0

0

6

 

PH4XX

Department Elective - II

3

0

0

6

PHxxx

Department Elective-I

3

0

0

6

 

PH4XX

Department Elective - III

3

0

0

6

XXxxx

Open Elective - II

3

0

0

6

 

XX4XX

Open Elective - III

3

0

0

6

PH417

Advanced Physics Lab

0

0

6

6

 

HS4XX

HSS Elective - IV

3

0

0

6

PH498

Project - I

0

0

6

6

 

PH499

Project - II

0

0

6

6

12

0

12

36

 

 

 

15

0

6

36

 

 

CH 101             Chemistry                    (3-1-0-8)

 

Structure and Bonding; Origin of quantum theory, postulates of quantum mechanics; Schrodinger wave equation: operators and observables, superposition theorem and expectation values, solutions for particle in a box, harmonic oscillator, rigid rotator, hydrogen atom; Selection rules of microwave and vibrational spectroscopy; Spectroscopic term symbol; Molecular orbitals: LCAO-MO; Huckel theory of conjugated systems; Rotational, vibrational and electronic spectroscopy; Chemical Thermodynamics: The zeroth and first law, Work, heat, energy and enthalpies; The relation between C­­v and Cp; Second law: entropy, free energy (the Helmholtz and Gibbs) and chemical potential; Third law; Chemical equilibrium; Chemical kinetics: The rate of reaction, elementary reaction and chain reaction; Surface: The properties of liquid surface, surfactants, colloidal systems, solid surfaces, physisorption and chemisorption; The periodic table of elements; Shapes of inorganic compounds; Chemistry of materials; Coordination compounds: ligand, nomenclature, isomerism, stereochemistry, valence bond, crystal field and molecular orbital theories; Bioinorganic chemistry and organometallic chemistry; Stereo and regio-chemistry of organic compounds, conformers; Pericyclic reactions; Organic photochemistry; Bioorganic chemistry: Amino acids, peptides, proteins, enzymes, carbohydrates, nucleic acids and lipids; Macromolecules (polymers); Modern techniques in structural elucidation of compounds (UV-vis, IR, NMR); Solid phase synthesis and combinatorial chemistry; Green chemical processes.

 

Texts:

1. P. W. Atkins, Physical Chemistry, 5th Ed., ELBS, 1994.

2. C. N. Banwell, and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw-Hill, 1962.

3. F. A. Cotton, and G. Wilkinson, Advanced Inorganic Chemistry, 3rd Ed., Wiley Eastern Ltd., New Delhi, 1972, reprint in 1988.

4. D. J. Shriver, P. W. Atkins, and C. H. Langford, Inorganic Chemistry, 2nd Ed., ELBS ,1994.

5. S. H. Pine, Organic Chemistry, McGraw-Hill, 5th Ed., 1987

 

References:

1. I. A. Levine, Physical Chemistry, 4th Ed., McGraw-Hill, 1995.

2. I. A. Levine, Quantum Chemistry, EE Ed., prentice Hall, 1994.

3. G. M. Barrow, Introduction to Molecular Spectroscopy, International Edition, McGraw-Hill, 1962

4. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry: Principle, structure and reactivity, 4th Ed., Harper Collins, 1993

5. L. G. Wade (Jr.), Organic Chemistry, Prentice Hall, 1987.

 

 

 

CS 101             Introduction to Computing                  (3-0-0-6)

 

Introduction: The von Neumann architecture, machine language, assembly language, high level programming languages, compiler, interpreter, loader, linker, text editors, operating systems, flowchart; Basic features of programming (Using C): data types, variables, operators,  expressions, statements, control structures, functions; Advanced programming features: arrays and pointers, recursion, records (structures), memory management, files, input/output, standard library functions, programming tools, testing and debugging; Fundamental operations on data: insert, delete, search, traverse and modify; Fundamental data structures: arrays, stacks, queues, linked lists; Searching and sorting: linear search, binary search, insertion-sort, bubble-sort, selection-sort, radix-sort, counting-sort; Introduction to object-oriented programming

 

Texts:

 

1.  A Kelly and I Pohl, A Book on C, 4th Ed., Pearson Education, 1999.

2.  A M Tenenbaum, Y Langsam and M J Augenstein, Data Structures Using C, Prentice Hall India, 1996.

 

References:

 

1. H Schildt, C: The Complete Reference, 4th Ed., Tata Mcgraw Hill, 2000

2. B Kernighan and D Ritchie, The C Programming Language, 4th Ed., Prentice Hall of India, 1988.

 

CS 110                         Computing Laboratory             (0-0-3-3)

 

Programming Laboratory will be set in consonance with the material covered in CS101. This will include assignments in a programming language like C.

 

References:

 

1.     B. Gottfried and J. Chhabra,  Programming With C,  Tata Mcgraw Hill, 2005

 

MA 102       Mathematics - II           (3-1-0-8)

 

Vector functions of one variable – continuity and differentiability; functions of several variables – continuity, partial derivatives, directional derivatives, gradient, differentiability, chain rule; tangent planes and normals, maxima and minima, Lagrange multiplier method; repeated and multiple integrals with applications to volume, surface area, moments of inertia, change of variables; vector fields, line and surface integrals; Green’s, Gauss’ and Stokes’ theorems and their applications.

 

First order differential equations – exact differential equations, integrating factors, Bernoulli equations, existence and uniqueness theorem, applications; higher-order linear differential equations – solutions of homogeneous and nonhomogeneous equations, method of variation of parameters, operator method; series solutions of linear differential equations, Legendre equation and Legendre polynomials, Bessel equation and Bessel functions of first and second kinds; systems of first-order equations, phase plane, critical points, stability. 

 

Texts:

1.        G. B. Thomas (Jr.) and R. L. Finney, Calculus and Analytic Geometry, 9th Ed., Pearson Education India, 1996.

2.        S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984. 

References:

1.      T. M. Apostol, Calculus - Vol.2, 2nd Ed., Wiley India, 2003.

2.      W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Ed., Wiley India, 2009.

3.      E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.

4.      E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

 

ME 101             Engineering Mechanics                        (3-1-0-8)

 

Basic principles: Equivalent force system; Equations of equilibrium; Free body diagram; Reaction; Static indeterminacy. Structures: Difference between trusses, frames and beams, Assumptions followed in the analysis of structures; 2D truss; Method of joints; Method of section;  Frame; Simple beam;  types of loading and supports;  Shear Force and bending Moment diagram in beams; Relation among load, shear force and bending moment. Friction: Dry friction; Description and applications of friction in wedges, thrust bearing (disk friction), belt, screw, journal bearing (Axle friction); Rolling resistance. Virtual work and Energy method: Virtual Displacement; Principle of virtual work; Applications of virtual work principle to machines; Mechanical efficiency; Work of a force/couple (springs etc.); Potential energy and equilibrium; stability. Center of Gravity and Moment of Inertia: First and second moment of area; Radius of gyration;  Parallel axis theorem;  Product of inertia, Rotation of axes and principal moment of inertia;  Moment of inertia of simple and composite bodies. Mass moment of inertia. Kinematics of Particles: Rectilinear motion; Curvilinear motion; Use of Cartesian, polar and spherical coordinate system; Relative and constrained motion; Space curvilinear motion. Kinetics of Particles: Force, mass and acceleration; Work and energy; Impulse and momentum; Impact problems; System of particles. Kinematics and Kinetics of Rigid Bodies: Translation; Fixed axis rotational;  General plane motion; Coriolis acceleration;  Work-energy;  Power;  Potential energy;  Impulse-momentum and associated conservation principles;  Euler equations of motion and its application.

 

Texts

1. I. H. Shames, Engineering Mechanics: Statics and Dynamics, 4th Ed., PHI, 2002.

2. F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers, Vol I - Statics, Vol II – Dynamics, 3rd Ed., Tata McGraw Hill, 2000.

 

 

References

1. J. L. Meriam and L. G. Kraige, Engineering Mechanics, Vol I – Statics, Vol II – Dynamics, 5th Ed., John  Wiley, 2002.

2. R. C. Hibbler, Engineering Mechanics, Vols. I and II, Pearson Press, 2002.

 

 

PH 102             Physics - II                   (2-1-0-6)

 

Vector Calculus: Gradient, Divergence and Curl, Line, Surface, and Volume integrals, Gauss's divergence theorem and Stokes' theorem in Cartesian, Spherical polar, and Cylindrical polar coordinates, Dirac Delta function.

 

Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, Electrostatic Potential, Boundary conditions, Work and Energy, Conductors, Capacitors, Laplace's equation, Method of images, Boundary value problems in Cartesian Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacement, Boundary conditions in dielectrics, Energy in dielectrics, Forces on dielectrics.

 

Magnetostatics: Lorentz force, Biot-Savart and Ampere's laws and their applications, Divergence and Curl of Magnetostatic fields, Magnetic vector Potential, Force and torque on a magnetic dipole, Magnetic materials, Magnetization, Bound currents, Boundary conditions.

 

Electrodynamics: Ohm's law, Motional EMF, Faraday's law, Lenz's law, Self and Mutual inductance, Energy stored in magnetic field, Maxwell's equations, Continuity Equation, Poynting Theorem, Wave solution of Maxwell Equations.

 

Electromagnetic waves: Polarization, reflection & transmission at oblique incidences.

 

Texts:

  1. D. J. Griffiths, Introduction to Electrodynamics, 3rd Ed., Prentice-Hall of India, 2005.
  2. A.K.Ghatak, Optics, Tata Mcgraw Hill, 2007.

 

References:

  1. N. Ida, Engineering Electromagnetics, Springer, 2005.
  2. M. N. O. Sadiku, Elements of Electromagnetics, Oxford, 2006.
  3. R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol.II, Norosa Publishing House, 1998.
  4. I. S. Grant and W. R. Phillips, Electromagnetism, John Wiley, 1990.

 

 

EE 102 Basic Electronics Laboratory               (0-0-3-3)

 

Experiments using diodes and bipolar junction transistor (BJT): design and analysis of half -wave and full-wave rectifiers, clipping circuits and Zener regulators, BJT characteristics and BJT amplifiers; experiments using operational amplifiers (op-amps): summing amplifier, comparator, precision rectifier, astable and monostable multivibrators and oscillators; experiments using logic gates: combinational circuits such as staircase switch, majority detector, equality detector, multiplexer and demultiplexer; experiments using flip-flops: sequential circuits such as non-overlapping pulse generator, ripple counter, synchronous counter, pulse counter and numerical display.

References:

 

  1. A. P. Malvino, Electronic Principles, Tata McGraw-Hill, New Delhi, 1993.
  2. R. A. Gayakwad, Op-Amps and Linear Integrated Circuits, PHI, New Delhi,  2002.

3.     R.J. Tocci, Digital Systems, 6th Ed., 2001.

 

 

PH 201             Advanced Classical Mechanics            (3-1-0-8)

 

Generalized coordinates. Lagrangian formulation of dynamical systems. D’Alemberts Principle. calculus of variations; Principle of least action: Hamilton’s principle, Symmetry and conservation theorems, Hamiltonian Formulation, Legendre transformation, Poisson brackets; Two body central force problem: conservation of angular momentum and energy, motion in gravitational potential, equation for the orbit, stability of orbits; Conserved quantities : angular momentum and Runge Lenz Vector; Orthogonal transformation: rigid body rotation about a fixed axis, moment of Inertia tensor, Eigen values and principal axis transformations; Euler angles, Euler equations of a rigid body, precession of heavy symmetrical top; Small oscillations: dynamical matrix, normal modes. Continuum mechanics: Transverse motion of a Taut String, the wave equation, boundary conditions, waves on a finite string, three-dimensional wave equation, volume and surface forces; Stress and Strain: the elastic moduli, the stress tensor, the strain tensor for a solid; Relation Between Stress and Strain: Hooke's law, the equation of motion for an elastic solid, longitudinal and transverse waves in a solid; Fluids: description of the motion, waves in a Fluid.

 

Texts:

              1. N.C. Rana and P.S. Joag, Classical Mechanics, Tata McGraw-Hill, New Delhi, 1991.

              2. H. Goldstein, Classical Mechanics, Narosa, New Delhi, 1998.

 

References:

              1. J. R. Taylor, Classical Mechanics, University Science Books, 2003.

              2. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Elsevier, 2005.

 

 

 

PH 203             Semiconductor Devices           (3-0-0-6)

 

Energy bands in solids and Charge carriers.  Semiconductors:  Elemental and compound semiconductors, intrinsic and extrinsic materials, Direct and indirect band-gap semiconductors ,Heavily doped semiconductors.  Charge carrier in semiconductors: mobility , impurity band conduction, nonlinear conductivity, excess carriers in semiconductors.  Semiconductor Bloch equation, transport properties. P-N junctions: fabrication, static and dynamic behavior of p-n junction diodes, Junction breakdown in p-n junctions, tunnel diode, Schottky diode.  Bipolar Junction Transistor:  fundamentals of BJT operation, BJT fabrication, carrier distribution and terminal current, generalized biasing, switches, frequency limitations of transistors.  Field Effect Transistors:  JFET, MOSFET.  Metal Semiconductor junctions: Schottky effect, rectifying and Ohmic contacts.  Integrated circuits, fabrication methods.  Power devices: p-n-p-n diode, Silicon controlled rectifiers.  Optoelectronic Devices:  photodiodes, light emitting diodes, semiconductor lasers, photovoltaic cells.

 

Texts:

 

  1. S. M. Sze, Physics of Semiconductor devices, 2nd Ed., John Wiley, 1982.
  2. M. Shur, Introduction to Electronic Devices, John Wiley, 2000.
  3. J. Singh, Semiconductor Devices - Basic Principles, John Wiley, 2001.

 

 

References:

 

  1. M. S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley, 2008.
  2. B. G. Streetman, Solid State Electronic Devices, 5th Ed., PHI, 2001.

 

PH 205             Heat and Thermodynamics       (2-1-0-6)

 

Kinetic theory and Transport phenomena: Equation of state of a perfect gas, Maxwell velocity distribution, real gases and Vander Wall’s equation, Brownian motion, mean free path, viscosity and thermal conductivity. Laws of thermodynamics and applications: Review of thermodynamic systems, state variables, intensive and extensive parameters, thermodynamic processes, Zeroth and first law of thermodynamics;  State functions, internal energy and enthalpy, Joule Thomson effect, Carnot process and entropy, second law of thermodynamics, refrigerators and thermodynamic engines; Otto and diesel engines, TdS equations, Third law of thermodynamics;   Thermodynamic potentials: Entropy and internal energy as thermodynamic potentials, Legendre transformation, Helmholtz and Gibbs potentials, enthalpy, grand potential, transformation of variables Maxwell relations;  Phase equilibria: Gibb’s phase rule, Clausius-Clapeyron equation, phase equilibrium and Maxwell construction, first order phase transitions.

 

Texts:

 

1.     W. Pauli, Thermodynamics and kinetic theory of gases, Dover Publications, 2010

2.     M. W. Zeemansky and R. H. Dittman, Heat and thermodynamics, McGraw Hill, 1997

References:

 

 

1.     F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Narosa, New Delhi, 1975.

2.     C. Kittel and H. Kroemer, Thermal Physics, W. H. Freeman & Co., 1980.

3.     F. Mandl, Statistical Physics, John Wiley, 1978.

4.     W. Greiner, L. Neise and H. Stocker, Thermodynamics and Statistical Mechanics, Springer,1995.

 

PH 202             Electromagnetics         (3-1-0-8)

 

Electrostatics: Green function, Dirichlet and Neumann boundary conditions, Green function for the sphere.  Laplace Equation:  Separation of variables in spherical and cylindrical coordinates and general solution (Legendre polynomials, Spherical harmonics, Bessel function, etc.). Expansion of Green function in spherical and cylindrical coordinates.  Multipole expansion.  Dielectrics:  Boundary value problem, Clausius Mossotti equation.  Electrostatic energy.  Anisotropy and susceptibility tensor.  Magnetism:  Green function method for vector potential,  Magnetic materials,  Boundary value problems. Magenetic field in conductors.Maxwell equations: Time varying fields, conservation laws, Plane waves,  propagation in nonconducting  and conducting media.  Reflection and refraction, Fresnel relations.  Kramers-Kronig relations. Gauge transformation and gauge conditions.  Green function method for wave equation.  Retarded potentials.  Poynting theorem – for harmonic fields – in dispersive medium.  Transformation properties of the EM field.  Wave guides & Cavities:  Fields within a conductor.  Rectangular and cylindrical geometries.  Orthonormal modes.  Energy flow and attenuation.  Power loss and Q-value.  Schumann resonances.  Radiation:  Oscillating source.  Electric dipole, magnetic dipole, and electric quadrupole fields.  Centre-fed linear antenna.  Multipole expansion and multipole radiation.  Scattering of electromagnetic waves.

 

Texts:

  1. J. D. Jackson, Classical Electrodynamics, 3rd Ed., John Wiley, 2005.
  2. W. Greiner, Classical Electrodynamics, Springer, 2006.

 

References:

  1. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd Ed., Prentice Hall of India, 1995.
  2. J. D. Kraus, Antennas, 2nd Ed., McGraw-Hill, 1988.

 

PH 204             Quantum Mechanics                (3-1-0-8)

 

Review of wave mechanics: Young’s double slit, de Broglie relation, wave packets, Schroedinger equation; Observable, eigen values and eigen functions; Simple applications:  particle in a box; potential well; potential barrier, delta function potential, linear harmonic oscillator; Matrix formulation: Dirac’s bra and ket notation, matrix representation of vectors and operators, expectation values; Angular momentum: spherical harmonics, L2 and Lz operators, commutation relations, spin of electron; 3-dimensional problems: Hydrogen atom, energy levels, wave function; Time independent perturbation: non-degenerate and degenerate cases; applications to Zeeman effect.

 

Texts:

1.     E. Merzbacher, Quantum Mechanics, 3rd Ed., John Wiley & Sons, 1998.

2.     S. Gazierowicz, Quantum Physics,, John Wiley, 2000

 

References:

 

1.     P. W. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill, 1995.

2.     J.J. Sakurai,  Modern Quantum Mechanics,  Pearson Education, 2002.

3.     R. Shankar, Principle of Quantum Mechanics, 2nd Ed., Springer, 2008.

4.     B.H. Bransden and C.J. Joachain,  Quantum Mechanics,  2nd Ed., Pearson Education, 2007.

 

PH 206             Analog and Digital Electronics             (3-0-0-6 )

 

Physics of junction devices; BJT/FET amplifiers; Feedback: effect of negative and positive feedback, basic feedback topologies; Feedback amplifiers: sinusoidal oscillators. different classes of power amplifiers;  differential amplifiers; Operational amplifiers: arithmetic circuits,  active filters, voltage controlled oscillators, A/D and D/A converters,  sample and hold circuits and other applications of Op-amps; SE/NE 555 timer IC, multivibrators.Review of number systems and their inter conversion, logic gates and  logic families; MOSFET as switch; CMOS inverter; Combinational logic  modules; flip-flops; registers; counters; sequential circuits, decoders, encoders, multiplexers, demultiplexers and their applications; comparators; Different types of semiconductor memories and their architectures; Programmable logic devices.

 

Texts:

 

1. A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford University Press, 2008.

2. R. A. Gaykwad, Op-Amps and Linear Integrated Circuits, Prentice- Hall of India, 2002.

3. D. P. Leach, A. P. Malvino and G Saha, Digital Principles and  Applications, Tata McGraw Hill, 2007.

 

References:

 

1.     J. F. Wakerly, Digital Design - Principles and Practices, 3rd Ed., Prentice Hall of India, 2005.

2.     J. Millman and C. C. Halkias, Integrated Electronics, Tata McGraw Hill, 1995.

3.     R. L. Boylestad and L. Nashelsky, Electronic Devices and Circuit Theory, Pearson Education, 2007.

4.     P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, 1995.

5.     M. Mano, Digital Design, 2nd Ed., Prentice Hall of India, 1997.

 

PH 210             Electronic Lab - I                      ( 0-0-4-4 )

Amplifiers:  single- and multi-stage amplifiers, frequency response,  Fourier transform, various classes of amplifiers and their frequency response, various modulation schemes.  Multivibrators and wave function generators, filters.  Measurement of depletion layer capacitance and effect of temperature.  Controller circuits.

 

References:

1.     P. B. Zbar and A. P. Malvino, Basic electronics: A text-lab manual, Tata McGraw Hill, 1983.

2.     P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, 1995.

3.     R. A. Gayakwad, Op-Amps and Linear Integrated Circuits, Prentice Hall of India, 2002.

 

 

PH 301             Microprocessor Architecture and Programming                       (3-0-0-6 )

 

Introduction to Microprocessors.  The 8085 Architecture, Bus organization, Registers, Memory, I/O devices.  Control signals, Machine cycles and Bus timings.  Memory Interfacing:  Memory Read cycle, Address decoding, Interfacing the 8155 memory section.  I/O Interfacing:  I/O Instructions and executions, Device selection, Interfacing with input and output devices.  Memory mapped I/O.  8085 Instructions and Assembly Language:  Arithmetic operations, Logic operations, Branch operations.  Controls and time delays.Flowchart and Programming techniques, Stack and Subroutines, Restart, Conditional Call, and Return instructions.  Nesting.  Code Conversions:  BCD-Binary, BCD-seven segment LED, Binary-ASCII.  BCD Arithmetic and 16-bit data operations.  Operating System:  Assembler and programming using an Assembler.  Interrupts:  Instructions, Restart, Trap.  Programmable interrupt controller 8259A.  Interfacing:  with D/A and A/D converter.  Interfacing I/O ports using 8155.  The 8279 keyboard/display interfacing.  The 8255 programmable peripheral interface.  Serial I/O and Data communication.  Microprocessor applications.

 

Texts:

  1. R. S. Gaonkar, Microprocessor Architecture, Programming, and Applications with the 8085 , 5th Ed., Penram International/ Prentice Hall, 1999.
  2. N. K. Srinath, 8085 Microprocessor Programming and Interfacing, Prentice Hall of India, 2005.

 

References:

  1. D. V. Hall, Microprocessors and Interfacing, Tata McGraw-Hill, 1995.
  2. W. Kleitz, Microprocessor and Microcontroller Fundamentals: the 8085 and 8051 Hardware and Software, Prentice Hall, 1997.
  3. J. Uffenbeck, Microcomputers and Microprocessors: the 8080, 8085, and Z80 Programming, Interfacing, and Troubleshooting, Prentice Hall, 1999.
  4. J. Uffenbeck, 8086 Family, Programming and Interfacing, PHI, 2001.

 

 

PH 303   Atomic and Molecular Spectroscopy              (3-0-0-6)

 

Review of single electron systems; Multi-electron atoms: central-field and Hartree - Fock approximations, Thomas Fermi model, angular momentum, LS and jj coupling, Pauli exclusion principle, alkali spectra, Helium atom, complex atoms; Zeeman effect, Paschen-Back effect and Stark effect.

 

Rotational spectra of diatomic molecules, infra-red spectra, diatomic vibrating rotator, vibration-rotation spectra; electronic spectra of diatomic molecules, vibrational coarse structure, Franck-Condon principle, dissociation energy, rotational fine structure; Spectroscopic Techniques: Interferometers and spectrometers, FTIR, Raman, NMR and ESR spectroscopy.

 

Texts:

1. B H Bransden and C J  Joachain, Physics of atoms and molecules, 2nd Ed., Pearson Education, 2007.

2. A N Banwell and E M McCash, Fundamentals of molecular spectroscopy, 4th Ed., Tata McGraw Hill, 1995.

References:

 

1.     H E White, Introduction to atomic spectra, 1st Ed., McGraw Hill, 1934.

2.     H. Haken and H. C. Wolf, The Physics of Atoms and Quanta: Introduction to experiment and theory, 7th Ed., Springer, 2010.

3.     S. Svanberg, Atomic and molecular spectroscopy: basic aspects and practical applications, 4th Ed., Springer, 2004.

4.     W. Demtroder, Laser Spectroscopy, 4th Ed., Springer, 2008.

 

PH 305                    Computational Physics          (2-0-2-6)

 

Matrices: System of linear equations, Gauss and Gauss-Jordan elimination, Matrix Inversion, LU decomposition, eigenvalue and eigenvector problems, Power and Jacobi method, application  to physics problems; Ordinary and Partial Differential Equations: Euler, Runge-Kutta and finite difference methods;  solution to initial and boundary value problems, Finite difference solutions to hyperbolic, parabolic and elliptic partial differential equations, application to physics problems; Monte Carlo Simulation: Markov process and Markov chain, random numbers, simple  and importance sampling,  Metropolis algorithm, 2D-Ising model.

 

Texts:

1.     S. S. M. Wong, Computational Methods in Physics and Engineering, World Scientific, 1997.

2.     T. Pang, An Introduction to Computational Physics, Cambridge University Press, 1997.

 

 

References:

1.     R. H. Landau, M. J. Paez and C. C. Bordeianu, Computational Physics: Problem Solving with Computer, Wiley Vch Verlag Gmbh & Co. KGaA, 2007.

2.     D. Frenkel and B.  Smit, Understanding Molecular Simulation, Academic Press, 1996.

3.     M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford, 2001.

4.     M. P.  Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1991.

5.     W. H. Press, S. A. Teukolsky, W. T. Verlling and B. P. Flannery, Numerical Recipes in C/Fortran, Cambridge, 1998.

 

PH 307                    Statistical Mechanics                            (2-1-0-6)

 

Ensemble theory: Phase space, Ergodic hypothesis, Liouville's theorem, micro-canonical, canonical and grand canonical ensembles, equipartition and virial theorems, formulation of quantum statistics, quantum mechanical ensemble theory. Quantum gases: Ideal Bose gas, Bose Einstein condensation, blackbody radiation, phonons; ideal Fermi gas, Pauli para-magnetism, thermionic emissions, white dwarfs.  Non-equilibrium statistical mechanics: Boltzmann transport equation, master equations, Markov processes, diffusion and Brownian motion.

Texts:
1. R.K. Pathria, Statistical Mechanics, Butterworth Heinemann, 1996.
2. N. Pottier, Nonequilibrium Statistical Physics, Oxford University Press, 2010.
 
References:
1.                 K. Huang, Statistical Mechanics, John Wiley, Asia, 2000.
2.                 L.D. Landau and E.M. Lifshitz, Statistical Physics-1, Pergamon, 1980.
3.                 L. Couture and R. Zitoun, Statistical Thermodynamics and Properties of Matter, Gordon & Breach Science Publishers, 1998.

 

 

PH 311             Electronics Lab - II       (0-0-6-6)

 

Experiments using Small Scale Integration and Medium Scale Integration digital integrated circuits: logic gates, flip-flops, counters, multiplexers, demultiplexers, shift registers, seven-segment decoders, monostable multivibrators, latches, memories, etc. Assembly language programming for 8085 microprocessor, interfacing 8085 microprocessor with memory and I/O devices, 8085 microprocessor kit based interfacing experiments using peripheral programmable interface such as LED and 7-segment display, Temperature controller, stepper motor control, A/D and D/A converters, etc.

References:

 

1.     P. B. Zbar and A. P. Malvino, Basic electronics: A text-lab manual, Tata McGraw Hill, 1983.

2.     A. P. Malvino and D. P Leach, Digital Principles and Applications. McGraw-Hill,1996.

3.     R. S. Gaonkar, Microprocessor Architecture, programming & application with 8085/8080A, 2nd Ed., New Age, 1995.

 

 

PH 302             Solid State Physics      (2-1-0-6)

 

Crystallography: crystal lattices and symmetry groups, reciprocal lattice, Brillouin zone, Miller indices, crystal structure by X-ray diffraction, crystal defects; Thermal properties: crystal potentials, harmonic theory of lattice vibrations, optical and acoustic modes, density of states, Einstein and Debye theory of specific heat; Electronic properties: free electron theory, electrons in a periodic potential, Bloch's theorem, Kronig-Penny model, formation of bands, effective mass, holes, classification of metal, insulator and semiconductor, intrinsic and extrinsic semiconductors, law of mass action, Hall effect; Magnetic properties: classical and quantum models of diamagnetism, quantum theory of para-magnetism, Lande g factor, Hund's rule, electronic configurations, crystal field, Curie law, concepts of ferro, ferri, and anti-ferro magnetism; Superconductivity: Meissner effect, London equations, BCS ground state, flux quantization in superconducting ring, type-II superconductors, Josephson tunnelling, high temperature superconductors.

Texts:

1.     H. P. Myers, Introduction to Solid State Physics, CRC press, 1997.

2.     C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, 2005.

 

 

References:

       1. N.W. Ashcroft and N.D. Mermin, Solid State Physics, HBC Publication, 1976.

       2. J. R. Christman, Fundamentals of Solid State Physics, John Wiley & Sons, 1988.

3.   A.J. Dekker, Solid State Physics, Mcmillan, 1986.

 

PH 304             Engineering Optics      (3-0-0-6)

 

Geometrical optics: Matrix formulation for  lens and mirrors and combinations, Aberrations.  Diffraction Theory: Kirchoff integrals, Fraunhoffer and Fresnel diffraction, Propogation of Gaussian beam, derivation of lens making formula, Fourier optics, Spatial frequency filtering, image processing, Holography.

Interference Phenomena: Two and Multiple beam interference, effect of line width, fringe contrast, coherence, Optical properties of single and multilayer thin films, matrix formulation, applications of interferometer.  Polarization: Polarization of radiation, polarization calculus (matrix formulation and Poincare representation, Pancharatnam phase), birefringence, crystal optics, Ellipsometry and application of polarization based devices.  Optical designing and testing, optical devices and their applications.

 

Texts:

1.     M. Born and E. Wolf, Principles of Optics, 6th Ed., Cambridge University Press, 1997.

2.     B. H. Walker, Optical engineering fundamentals, SPIE Optical Engineering Press, 1998.

 

References:

1.     R. D. Gunther, Modern Optics, John Wiley, 1990.

2.     K. Iizuka, Elements of Photonics, John Wiley, 2002.

3.     R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized light, Elsevier, 1996.

4.     W. J. Smith, Modern optical engineering, McGraw Hill, 1991.

 

PH 306             Nuclear Science and Engineering       (3-0-0-6)

Review of nuclear physics: general nuclear properties, models of nuclear structure, nuclear reactions, nuclear decays and fundamental interactions; Nuclear radiation: radioactivity, radiation dosimetry, dosimetry units and measurement; radiation protection and control; applications of radiation: medical applications, industrial radiography, neutron activation analysis, instrument sterilization, nuclear dating; Nuclear fission: nuclear energy, fission products, fissile materials, chain reactions, moderators, neutron thermalization, reactor physics, criticality & design; nuclear power engineering; energy transport and conversion in reactor systems, nuclear reactor safety; nuclear fusion: controlled fusion, nuclear fusion reactions, fusion reactor concepts, magnetic confinement, tokamak, inertial confinement by lasers; Nuclear waste management: components and material flow sheets for nuclear fuel cycle, waste characteristics, sources of radioactive wastes, compositions, radioactivity and heat generation; waste treatment and disposal technologies; safety assessment of waste disposal; Particle accelerators and detectors: interactions of charged particles, gamma rays and neutrons with matter, electrostatic accelerators, cyclotron, synchrotron, linear accelerators, colliding beam accelerators, gas-filler counters, scintillation detectors, and semiconductor based particle detectors.

Texts:

 

1.     K. S. Krane, Introductory Nuclear Physics, John Wiley, 1987.

2.     R. J. Blin-Stoyle, Nuclear and Particle Physics, Springer, 1991.

 

References:

 

1.     J. K. Shultis and R. E. Faw, Fundamentals of Nuclear Science and Engineering, Marcel Dekker, 2007.

2.     J. E. Turner, Atoms, Radiation, and Radiation Protection, Wiley-VCH, 2007.

3.     R. L. Murray, Nuclear Energy, 6th Ed., Butterworth-Heinemann, 2008.

4.     J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, Wiley, 1976.

5.     D. H. Perkins, Introduction to High Energy Physics, Cambridge University Press, 2000.

6.     J. R. Lamarsh and A. J. Baratta, Introduction to Nuclear Engineering, Prentice Hall, (2001

7.     G. Chmielewski, C. M. Kang, C. S. Kang, and J. L. Vujic, Radiation Technology: Introduction to Industrial and Environmental Applications, Seoul National University Press, 2006.

 

PH 308             Measurement Techniques        (2-0-2-6)

 

Sensors: Resistive, capacitative, inductive, electromagnetic, thermoelectric, elastic, piezoelectric, piezoresistive, photosensitive and electrochemical sensors; interfacing sensors and data acquisition using serial and parallel ports.  Low Pressure: Rotary, sorption, oil diffusion, turbo molecular, getter and cryo pumps; Mcleod, thermoelectric (thermocouple, thermister and pirani), penning, hot cathode and Bayard Alpert gauges; partial pressure measurement; leak detection; gas flow through pipes and apertures; effective pump speed; vacuum components.   Low Temperature: Gas liquifiers; Cryo-fluid baths; liquid He cryostat design; closed cycle He refrigerator; low temperature measurement.   Analytical Instruments: X-ray diffractometer; Spectrophotometers; FT-IR; DSC; lock-in amplifier; spectrum analyzer, fluorescence and Raman spectrometer, scanning electron microscope, atomic force microscope, interferometers.   Laboratory Component: physical parameter measurement using different sensors; low pressure generation and measurement; calibration of secondary gauges; cryostat design; CCR operation; data collection from analytical instruments in the department. 

 

Texts:

1. A. D. Helfrick and W. D. Cooper, Modern Electronic Instrumentation and Measurement Techniques, Prentice-Hall of India, 1996.

2. J. P. Bentley, Principles of Measurement Systems, Longman, 2000.

 

References:

1.     G. K. White, Experimental Techniques in Low Temperature Physics, Clarendon, 1993.

2.      A. Roth, Vacuum Technology, Elsevier, 1990. 

3.     D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Saunders Coll. Publ., 1998.

 

PH 320             General Physics Lab    (0-0-6-6)

 

Experiments based on general physics, optics, and condensed matter physics.

 

References:

 

  1. R.  A. Dunlop, Experimental Physics, Oxford University Press, 1988.
  2. A. C. Melissinos, Experiments in Modern Physics, Academic Press, 1996.

 

PH 413             Materials Science & Engineering          (3-0-0-6)

 

Classification of engineering materials; equilibrium and kinetics; structure of crystalline and non-crystalline solids; imperfections in solids; phase diagrams: phase rule, phases, binary phase diagram and eutectic, eutectoid and peritectic systems, microstructural changes, the lever rule, examples and application of phase diagram;  phase transformation: time scale of phase changes, nucleation and growth, transformation in steel, precipitation processes, solidification and crystallization, re-crystallization and grain growth; diffusion in solids: Fick’s laws and their applications, Kirkendall effect, atomistic model of diffusion; Mechanical properties of metals: elastic, anelastic and viscoelastic behaviors, plastic deformation and creep in crystalline materials, hardness, mechanical testing of metals;  failure: fracture, fatigue and creep; thermal processing of metal alloys: annealing processes, heat treatment of steels, precipitation hardening; oxidation and corrosion, oxidation resistant materials, protection against corrosion; electrical and optical properties of the materials; ceramics, polymers and composites materials, selection and design consideration; environmental issues in material science.

 

Texts:

1.     V. Raghavan, Material Science and Engineering : A First Course, 5th Ed, Prentice-Hall of India, 2004.

2.     W.D. Callister (Jr.), Materials Science and Engineering : An Introduction, 6th Ed., 2003.

References:

1.     J. B. Watchman, Characterization of Materials, Butterworth-Heinenmann, 1992.

2.     L.H. Van Valck, Elements of Materials Science and Engineering, 6th Ed., Addision-Wesley, 1998.

 

PH 415             Lasers and Photonics              (3-0-0-6)

 

Laser Physics:  The Einstein coefficients, light amplification, the threshold condition, laser rate equations, line broadening mechanisms, cavity modes, optical resonator, quality factor, mode selection, Q-switching, mode locking in lasers; gas lasers, solid state lasers, semiconductor lasers and dye lasers.

 

Photonics: optical properties of anisotropic media, wave refractive index, optical activity and Faraday effect, liquid crystals; principles of electro-optics, magneto-optics, photo refractive materials, acousto-optics and related devices; Nonlinear optical susceptibilities, second harmonic generation, self-focussing and Kerr effect; basic principles and applications of holography; Step index and graded index optical fibers, attenuation and dispersion; fiber optic communications; optical detectors.

 

Texts:

1.     W. T. Silfvast, Laser Fundamentals, 2nd Ed., Cambridge University Press, 2004.

2.     B.E.A. Saleh and M.C.Teich, Fundamentals of Photonics, 2nd Ed., Wiley, 2007.

 

References:

 

1.     A. Ghatak and K. Thyagarajan, Optical Electronics, Cambridge University Press, 2009.

2.     A. Yariv and P. Yeh, Photonics, 6th Ed., Oxford University Press, 2007.

3.     O. Svelto and D. C. Hanna, Principles of Lasers, Springer, 1998.

4.     R.W. Boyd, Nonlinear Optics, 3rd Ed., Academic Press, 2007.

5.       A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th Ed., Oxford University Press, 2006.

 

PH 417             Advanced Physics Lab             (0-0-6-6)

 

 

Experiments based on modern optics, lasers, solid state physics, microwave, nuclear physics and  advanced measurement techniques.

 

 

References:

 

  1. C. Isenberg and S. Chomet (eds.), Physics experiment and projects for students, Vols. I, II and III, Hemisphere Publishing Corporation, 1998.
  2. G. L. Squires, Practical Physics, Cambridge University Press, 1999.

 

 

PH 414             Nano Electronics and Nanophotonics              (3-0-0-6)

 

Nanoelectronics: Energy levels, Density of states. Bond structure, coulomb blockade, quantum wire, electron phase correlation, single electron tunneling, quantum dot, molecular motors, nano-transistors and FET and NEMS and sensors.Nanophotonics: nano scale field interaction, nanoconfinement, near field microscopy, plasmonics, nonlinear optical phenomena, nano-scale dynamics, quantum well laser, photonic crystal and wave guide. Growth method and characterization of material, nanolithography, nanphotonics for biotechnology.

 

Texts:

 

1.     Charles P. Poole and Frank J. Owens, Introduction to Nanotechnology, Wiley-Interscience, 2003.

 

2.     P. N. Prasad, Nanophotonics, Wiley Interscience, 2004.

 

 

References:

 

  1. A. S. Edelstein and R. C. Cammarata (eds.), Nanomaterials: Synthesis, Properties and Applications, IOP, UK, 1996.
  2. Z. L. Wang (ed.), Characterization of Nanophase Materials, Wiley-VCH, 2001.
  3. T. Heinzel, Mesoscopic Electronics in Solid State Nanostructures, Wiley-VCH, 2003.
  4. Rainer Waser (ed.), Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Wiley-VCH, 2003.