
MA 101 (Mathematics I)

Model Solutions of End-semester Examination (Calculus)

4.(a) Let α = lim
x→1+

f(x)−f(1)
x−1 , so that α ∈ R. Then lim

x→1+
[f(x)−f(1)] = lim

x→1+

[
f(x)−f(1)

x−1 · (x− 1)
]

=

lim
x→1+

f(x)−f(1)
x−1 · lim

x→1+
(x− 1) = α.0 = 0 and so lim

x→1+
f(x) = lim

x→1+
[f(x)− f(1) + f(1)] =

lim
x→1+

[f(x)−f(1)]+ lim
x→1+

f(1) = 0+f(1) = f(1). Similarly, we get lim
x→1−

f(x) = f(1). Consequently

lim
x→1

f(x) = f(1) and so f is continuous at 1. Therefore the given statement is TRUE.

(b) For each n ∈ N, let xn =

{
0 if n is prime,
1 if n is not prime.

Then for all m,n ∈ N \ {1}, xmn = 1 and so for each m ∈ N \ {1}, xmn → 1. However, since the

subsequence (xp) (with p varying over all primes) of (xn) converges to 0, the sequence (xn) cannot

be convergent. Therefore the given statement is FALSE.

(c) If the power series
∞∑
n=0

an(x − 3)n is (conditionally) convergent for x = −5, then the power

series is (absolutely) convergent for all x ∈ R satisfying |x− 3| < | − 5− 3| = 8 and hence it must

be convergent for x = 8. Therefore the given statement is FALSE.

(d) If f(x) =
√

(x− 1)(2− x) for all x ∈ [1, 2], then f : [1, 2] → R is continuous and f is

differentiable on (1, 2). Since lim
x→1+

f(x)−f(1)
x−1 = lim

x→1+

√
2−x√
x−1 and lim

x→2−
f(x)−f(2)

x−2 = − lim
x→2−

√
x−1√
2−x do not

exist (in R), f is not differentiable at 1 and 2. Therefore the given statement is TRUE.

(e) Let f(x) =

{
1 if x = 1,
0 if 1 < x ≤ 2.

Then f : [1, 2] → R is Riemann integrable on [1, 2] and
2∫
1

f(x) dx = 0, since for every partition

P of [1, 2], L(f, P ) = 0, U(f, P ) ≥ 0 and if 0 < ε < 1, then for the partition P = {1, 1 + ε
2
, 2}

of [1, 2], U(f, P ) = ε
2
< ε. Hence it follows that F (x) =

x∫
1

f(t) dt = 0 for all x ∈ [1, 2]. Thus

F : [1, 2] → R is differentiable on [1, 2] but F ′(1) = 0 6= f(1). Therefore the given statement is

FALSE.

5. Let an = xn + 3
(

n
n+1

)n
for all n ∈ N. Then lim

n→∞
|an|

1
n = 2

3
< 1 and hence by root test, the

series
∞∑
n=1

an is convergent. Consequently lim
n→∞

an = 0. Therefore lim
n→∞

xn = lim
n→∞

[
an − 3

(1+ 1
n
)n

]
=

lim
n→∞

an − lim
n→∞

3
(1+ 1

n
)n

= 0− 3
e

= −3
e
.

6. Let xn =
√
n+1−

√
n

np
= 1

np(
√
n+1+

√
n)

and yn = 1

np+
1
2

for all n ∈ N. Then lim
n→∞

xn
yn

= lim
n→∞

1√
1+ 1

n
+1

=

1
2
6= 0. Since the series

∞∑
n=1

yn is convergent iff p + 1
2
> 1, i.e. iff p > 1

2
, by the limit comparison

test, the series
∞∑
n=1

xn is convergent iff p > 1
2
.

7. Let |f(a)| = min{|f(−1)|, |f(0)|, |f(1)|} and |f(b)| = max{|f(−1)|, |f(0)|, |f(1)|}, where

a, b ∈ {−1, 0, 1}. Then |f |(a) = |f(a)| ≤ 1
4

(
|f(−1)| + 2|f(0)| + |f(1)|

)
≤ |f(b)| = |f |(b).



Since f is continuous, the function |f | : [−1.1] → R is also continuous. Hence by the in-

termediate value property of the continuous function |f |, there exists c ∈ [−1, 1] such that

|f(c)| = |f |(c) = 1
4

(
|f(−1)|+ |f(0)|+ |f(1)|

)
.

8. Since f is differentiable on [0, 1], f is continuous on [0, 1]. Since f(0) < 1
2
< f(1), by

the intermediate value property of the continuous function f , there exists c ∈ (0, 1) such that

f(c) = 1
2
. Applying the mean value theorem on [0, c] and [c, 1], there exist a ∈ (0, c) and b ∈ (c, 1)

such that f(c) − f(0) = cf ′(a) and f(1) − f(c) = (1 − c)f ′(b). Thus a 6= b, f ′(a) = 1
2c

and

f ′(b) = 1
2(1−c) . Hence 1

f ′(a)
+ 1

f ′(b)
= 2c+ 2(1− c) = 2.

9. If f(x) = log(1 + x) for all x ∈ (−1
2
, 1), then f : (−1

2
, 1) → R is infinitely differentiable and

f (n)(x) = (−1)n−1(n−1)!
(1+x)n

for all x ∈ (−1
2
, 1) and for all n ∈ N. Let x ∈ (−1

2
, 1). The remainder term in

the Taylor expansion of f(x) about the point 0 is given by Rn(x) = fn+1(cn)
(n+1)!

xn+1 = (−1)nxn+1

(n+1)(1+cn)n+1 ,

where cn lies between 0 and x. If x ≥ 0, then 1 + cn > 1 and so |Rn(x)| ≤ 1
n+1
→ 0 as

n → ∞. On the other hand, if x < 0, then since 1 + cn > 1 + x > 0, we get 1
1+cn

< 1
1+x

and so

|Rn(x)| ≤ 1
n+1

(
|x|
1+x

)n+1

≤ 1
n+1
→ 0 as n → ∞ (since x > −1

2
, we get |x|

1+x
= − x

1+x
≤ 1). Hence

for each x ∈ (−1
2
, 1), we have found that lim

n→∞
Rn(x) = 0. Therefore the Taylor series of log(1 +x)

about 0 converges to log(1 + x) for each x ∈ (−1
2
, 1).

10. Let f(x) = x1+
1
x for all x > 0. Taking logarithm and differentiating, we get f ′(x) =

x1+
1
x [ 1
x
(1 + 1

x
) − 1

x2
log x] = x

1
x (1 + 1

x
− log x

x
) for all x > 0. Using L’Hôpital’s rule, we find

that lim
x→∞

log x
x

= 0 and lim
x→∞

x
1
x = 1 (after taking logarithm). Hence lim

x→∞
f ′(x) = 1. Therefore

lim
x→∞

[(x + 1)
x+2
x+1 − xx+1

x ] = lim
x→∞

[f(x + 1) − f(x)] = lim
x→∞

f ′(cx) = 1, since by the mean value the-

orem, for each x > 0, there exists cx ∈ (x, x + 1) such that f(x + 1) − f(x) = f ′(cx) and since

x < cx < x+ 1⇒ lim
x→∞

cx =∞.

11. The given integral is convergent iff both
2∫
1

√
x+3

(x+2)
√
x2−1 dx and

∞∫
2

√
x+3

(x+2)
√
x2−1 dx are conver-

gent. Let f(x) =
√
x+3

(x+2)
√
x2−1 , g(x) = 1√

x−1 and h(x) = 1

x
3
2

for all x > 1. Then lim
x→1+

f(x)
g(x)

=

lim
x→1+

√
x+3

(x+2)
√
x+1

=
√
2
3

and lim
x→∞

f(x)
h(x)

= lim
x→∞

√
1+ 3

x

(1+ 2
x
)
√

1− 1
x2

= 1. Since
2∫
1

g(x) dx and
∞∫
2

h(x) dx are

convergent, by the limit comparison test,
2∫
1

f(x) dx and
∞∫
2

f(x) dx are convergent. Therefore the

given integral is convergent.

12. The given circle and the cardioid meet at two points corresponding to θ = π
2

and θ = π. The

required area is 1
2

π∫
π
2

(3 sin θ)2 dθ− 1
2

π∫
π
2

9(1 + cos θ)2 dθ = −1
2

π∫
π
2

(9 + 9 cos 2θ+ 18 cos θ) dθ = 9(1− π
4
).

13. The sides of the triangle lie on the lines y = 2x − 1, y = −x + 5 and y = 1
2
(x + 1).

Therefore the required volume is π
2∫
1

[(2x−1)2− 1
4
(x+1)2] dx+π

3∫
2

[(−x+5)2− 1
4
(x+1)2] dx = 6π.


