MA 101 (Mathematics I)

Model Solutions of End-semester Examination (Calculus)

4.(a) Let $\alpha=\lim _{x \rightarrow 1+} \frac{f(x)-f(1)}{x-1}$, so that $\alpha \in \mathbb{R}$. Then $\lim _{x \rightarrow 1+}[f(x)-f(1)]=\lim _{x \rightarrow 1+}\left[\frac{f(x)-f(1)}{x-1} \cdot(x-1)\right]=$ $\lim _{x \rightarrow 1+} \frac{f(x)-f(1)}{x-1} \cdot \lim _{x \rightarrow 1+}(x-1)=\alpha .0=0$ and so $\lim _{x \rightarrow 1+} f(x)=\lim _{x \rightarrow 1+}[f(x)-f(1)+f(1)]=$ $\lim _{x \rightarrow 1+}[f(x)-f(1)]+\lim _{x \rightarrow 1+} f(1)=0+f(1)=f(1)$. Similarly, we get $\lim _{x \rightarrow 1-} f(x)=f(1)$. Consequently $\lim _{x \rightarrow 1} f(x)=f(1)$ and so f is continuous at 1 . Therefore the given statement is TRUE.
(b) For each $n \in \mathbb{N}$, let $x_{n}= \begin{cases}0 & \text { if } n \text { is prime, } \\ 1 & \text { if } n \text { is not prime. }\end{cases}$

Then for all $m, n \in \mathbb{N} \backslash\{1\}, x_{m n}=1$ and so for each $m \in \mathbb{N} \backslash\{1\}, x_{m n} \rightarrow 1$. However, since the subsequence $\left(x_{p}\right)$ (with p varying over all primes) of $\left(x_{n}\right)$ converges to 0 , the sequence $\left(x_{n}\right)$ cannot be convergent. Therefore the given statement is FALSE.
(c) If the power series $\sum_{n=0}^{\infty} a_{n}(x-3)^{n}$ is (conditionally) convergent for $x=-5$, then the power series is (absolutely) convergent for all $x \in \mathbb{R}$ satisfying $|x-3|<|-5-3|=8$ and hence it must be convergent for $x=8$. Therefore the given statement is FALSE.
(d) If $f(x)=\sqrt{(x-1)(2-x)}$ for all $x \in[1,2]$, then $f:[1,2] \rightarrow \mathbb{R}$ is continuous and f is differentiable on $(1,2)$. Since $\lim _{x \rightarrow 1+} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1+} \frac{\sqrt{2-x}}{\sqrt{x-1}}$ and $\lim _{x \rightarrow 2-} \frac{f(x)-f(2)}{x-2}=-\lim _{x \rightarrow 2-} \frac{\sqrt{x-1}}{\sqrt{2-x}}$ do not exist (in \mathbb{R}), f is not differentiable at 1 and 2 . Therefore the given statement is TRUE.
(e) Let $f(x)= \begin{cases}1 & \text { if } x=1, \\ 0 & \text { if } 1<x \leq 2 .\end{cases}$

Then $f:[1,2] \rightarrow \mathbb{R}$ is Riemann integrable on $[1,2]$ and $\int_{1}^{2} f(x) d x=0$, since for every partition P of $[1,2], L(f, P)=0, U(f, P) \geq 0$ and if $0<\varepsilon<1$, then for the partition $P=\left\{1,1+\frac{\varepsilon}{2}, 2\right\}$ of $[1,2], U(f, P)=\frac{\varepsilon}{2}<\varepsilon$. Hence it follows that $F(x)=\int_{1}^{x} f(t) d t=0$ for all $x \in[1,2]$. Thus $F:[1,2] \rightarrow \mathbb{R}$ is differentiable on $[1,2]$ but $F^{\prime}(1)=0 \neq f(1)$. Therefore the given statement is FALSE.
5. Let $a_{n}=x_{n}+3\left(\frac{n}{n+1}\right)^{n}$ for all $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\frac{2}{3}<1$ and hence by root test, the series $\sum_{n=1}^{\infty} a_{n}$ is convergent. Consequently $\lim _{n \rightarrow \infty} a_{n}=0$. Therefore $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left[a_{n}-\frac{3}{\left(1+\frac{1}{n}\right)^{n}}\right]=$ $\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} \frac{3}{\left(1+\frac{1}{n}\right)^{n}}=0-\frac{3}{e}=-\frac{3}{e}$.
6. Let $x_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n^{p}}=\frac{1}{n^{p}(\sqrt{n+1}+\sqrt{n})}$ and $y_{n}=\frac{1}{n^{p+\frac{1}{2}}}$ for all $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n}}+1}=$ $\frac{1}{2} \neq 0$. Since the series $\sum_{n=1}^{\infty} y_{n}$ is convergent iff $p+\frac{1}{2}>1$, i.e. iff $p>\frac{1}{2}$, by the limit comparison test, the series $\sum_{n=1}^{\infty} x_{n}$ is convergent iff $p>\frac{1}{2}$.
7. Let $|f(a)|=\min \{|f(-1)|,|f(0)|,|f(1)|\}$ and $|f(b)|=\max \{|f(-1)|,|f(0)|,|f(1)|\}$, where $a, b \in\{-1,0,1\}$. Then $|f|(a)=|f(a)| \leq \frac{1}{4}(|f(-1)|+2|f(0)|+|f(1)|) \leq|f(b)|=|f|(b)$.

Since f is continuous, the function $|f|:[-1.1] \rightarrow \mathbb{R}$ is also continuous. Hence by the intermediate value property of the continuous function $|f|$, there exists $c \in[-1,1]$ such that $|f(c)|=|f|(c)=\frac{1}{4}(|f(-1)|+|f(0)|+|f(1)|)$.
8. Since f is differentiable on $[0,1], f$ is continuous on [0, 1]. Since $f(0)<\frac{1}{2}<f(1)$, by the intermediate value property of the continuous function f, there exists $c \in(0,1)$ such that $f(c)=\frac{1}{2}$. Applying the mean value theorem on $[0, c]$ and $[c, 1]$, there exist $a \in(0, c)$ and $b \in(c, 1)$ such that $f(c)-f(0)=c f^{\prime}(a)$ and $f(1)-f(c)=(1-c) f^{\prime}(b)$. Thus $a \neq b, f^{\prime}(a)=\frac{1}{2 c}$ and $f^{\prime}(b)=\frac{1}{2(1-c)}$. Hence $\frac{1}{f^{\prime}(a)}+\frac{1}{f^{\prime}(b)}=2 c+2(1-c)=2$.
9. If $f(x)=\log (1+x)$ for all $x \in\left(-\frac{1}{2}, 1\right)$, then $f:\left(-\frac{1}{2}, 1\right) \rightarrow \mathbb{R}$ is infinitely differentiable and $f^{(n)}(x)=\frac{(-1)^{n-1}(n-1)!}{(1+x)^{n}}$ for all $x \in\left(-\frac{1}{2}, 1\right)$ and for all $n \in \mathbb{N}$. Let $x \in\left(-\frac{1}{2}, 1\right)$. The remainder term in the Taylor expansion of $f(x)$ about the point 0 is given by $R_{n}(x)=\frac{f^{n+1}\left(c_{n}\right)}{(n+1)!} x^{n+1}=\frac{(-1)^{n} x^{n+1}}{(n+1)\left(1+c_{n}\right)^{n+1}}$, where c_{n} lies between 0 and x. If $x \geq 0$, then $1+c_{n}>1$ and so $\left|R_{n}(x)\right| \leq \frac{1}{n+1} \rightarrow 0$ as $n \rightarrow \infty$. On the other hand, if $x<0$, then since $1+c_{n}>1+x>0$, we get $\frac{1}{1+c_{n}}<\frac{1}{1+x}$ and so $\left|R_{n}(x)\right| \leq \frac{1}{n+1}\left(\frac{|x|}{1+x}\right)^{n+1} \leq \frac{1}{n+1} \rightarrow 0$ as $n \rightarrow \infty$ (since $x>-\frac{1}{2}$, we get $\frac{|x|}{1+x}=-\frac{x}{1+x} \leq 1$). Hence for each $x \in\left(-\frac{1}{2}, 1\right)$, we have found that $\lim _{n \rightarrow \infty} R_{n}(x)=0$. Therefore the Taylor series of $\log (1+x)$ about 0 converges to $\log (1+x)$ for each $x \in\left(-\frac{1}{2}, 1\right)$.
10. Let $f(x)=x^{1+\frac{1}{x}}$ for all $x>0$. Taking logarithm and differentiating, we get $f^{\prime}(x)=$ $x^{1+\frac{1}{x}}\left[\frac{1}{x}\left(1+\frac{1}{x}\right)-\frac{1}{x^{2}} \log x\right]=x^{\frac{1}{x}}\left(1+\frac{1}{x}-\frac{\log x}{x}\right)$ for all $x>0$. Using L'Hôpital's rule, we find that $\lim _{x \rightarrow \infty} \frac{\log x}{x}=0$ and $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}=1$ (after taking logarithm). Hence $\lim _{x \rightarrow \infty} f^{\prime}(x)=1$. Therefore $\lim _{x \rightarrow \infty}\left[(x+1)^{\frac{x+2}{x+1}}-x^{\frac{x+1}{x}}\right]=\lim _{x \rightarrow \infty}[f(x+1)-f(x)]=\lim _{x \rightarrow \infty} f^{\prime}\left(c_{x}\right)=1$, since by the mean value theorem, for each $x>0$, there exists $c_{x} \in(x, x+1)$ such that $f(x+1)-f(x)=f^{\prime}\left(c_{x}\right)$ and since $x<c_{x}<x+1 \Rightarrow \lim _{x \rightarrow \infty} c_{x}=\infty$.
11. The given integral is convergent iff both $\int_{1}^{2} \frac{\sqrt{x+3}}{(x+2) \sqrt{x^{2}-1}} d x$ and $\int_{2}^{\infty} \frac{\sqrt{x+3}}{(x+2) \sqrt{x^{2}-1}} d x$ are convergent. Let $f(x)=\frac{\sqrt{x+3}}{(x+2) \sqrt{x^{2}-1}}, g(x)=\frac{1}{\sqrt{x-1}}$ and $h(x)=\frac{1}{x^{\frac{3}{2}}}$ for all $x>1$. Then $\lim _{x \rightarrow 1+} \frac{f(x)}{g(x)}=$ $\lim _{x \rightarrow 1+} \frac{\sqrt{x+3}}{(x+2) \sqrt{x+1}}=\frac{\sqrt{2}}{3}$ and $\lim _{x \rightarrow \infty} \frac{f(x)}{h(x)}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{3}{x}}}{\left(1+\frac{2}{x}\right) \sqrt{1-\frac{1}{x^{2}}}}=1$. Since $\int_{1}^{2} g(x) d x$ and $\int_{2}^{\infty} h(x) d x$ are convergent, by the limit comparison test, $\int_{1}^{2} f(x) d x$ and $\int_{2}^{\infty} f(x) d x$ are convergent. Therefore the given integral is convergent.
12. The given circle and the cardioid meet at two points corresponding to $\theta=\frac{\pi}{2}$ and $\theta=\pi$. The required area is $\frac{1}{2} \int_{\frac{\pi}{2}}^{\pi}(3 \sin \theta)^{2} d \theta-\frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} 9(1+\cos \theta)^{2} d \theta=-\frac{1}{2} \int_{\frac{\pi}{2}}^{\pi}(9+9 \cos 2 \theta+18 \cos \theta) d \theta=9\left(1-\frac{\pi}{4}\right)$.
13. The sides of the triangle lie on the lines $y=2 x-1, y=-x+5$ and $y=\frac{1}{2}(x+1)$. Therefore the required volume is $\pi \int_{1}^{2}\left[(2 x-1)^{2}-\frac{1}{4}(x+1)^{2}\right] d x+\pi \int_{2}^{3}\left[(-x+5)^{2}-\frac{1}{4}(x+1)^{2}\right] d x=6 \pi$.

