Indian Institute of Technology Guwahati

End-semester Examination

MA 101 (Mathematics I)

Maximum Marks : 50

Date : November 26, 2017

Time : 2 pm – 5 pm

 $[\mathbf{2}]$

No mark will be given for writing only TRUE or FALSE (without justification) in Questions 1 and 4.

For Questions 1 and 3, $M_{n,n}(\mathbb{R})$ denotes the vector space of all $n \times n$ matrices with entries from \mathbb{R} .

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) The set $V = \{B \in M_{4,4}(\mathbb{R}) : \det(B) < 100\}$ is a subspace of $M_{4,4}(\mathbb{R})$. [1]
 - (b) If U is the subset of M_{5,5}(ℝ) consisting of all matrices of rank at most 3, then U is a subspace of M_{5,5}(ℝ).
 [2]
- 2. Let $\mathcal{P}_2(\mathbb{R})$ be the vector space of all polynomials of degree at most 2 with coefficients in \mathbb{R} . Consider the map $T : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$, where

$$T(1 + x^{2}) = 1 - x^{2},$$

$$T(-1 - 2x) = -1 + 2x,$$

$$T(x - 3x^{2}) = x + cx^{2},$$

$$T(1 - 5x + 6x^{2}) = 1 + 3x - 6x^{2}.$$

If T is a linear transformation, determine all possible values of $c \in \mathbb{R}$. [2]

- 3. Let W denote the vector subspace of $M_{3,3}(\mathbb{R})$ consisting of all skew-symmetric matrices.
 - (a) Write down a basis for W (no justification is required).
 - (b) Consider the linear transformation $S:W\to \mathbb{R}^3$ given by

$$S(A) = A \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix} \qquad \forall \ A \in W.$$

Determine a basis for $\operatorname{range}(S)$ (with proper justification). [2]

(c) For S as above, determine the dimension of $ker(S) = \{A \in W : S(A) = 0\}$ with proper justification. [1]

(Continued on the next page)

- 4. State TRUE or FALSE giving proper justification for each of the following statements. [2 × 5]
 (a) If f : ℝ → ℝ is such that both lim_{x→1+} f(x) f(1)/(x 1) and lim_{x→1-} f(x) f(1)/(x 1) exist (in ℝ), then f must be continuous at 1.
 - (b) If (x_n) is a sequence in \mathbb{R} such that for each $m \in \mathbb{N}$ with m > 1, the subsequence (x_{mn}) of (x_n) is convergent, then (x_n) must be convergent.
 - (c) There exists a power series $\sum_{n=0}^{\infty} a_n (x-3)^n$ which is conditionally convergent for x = -5 and divergent for x = 8.
 - (d) There exists a continuous function $f : [1, 2] \to \mathbb{R}$ which is differentiable on (1, 2) but not differentiable at 1 and 2.
 - (e) If $f:[1,2] \to \mathbb{R}$ is Riemann integrable on [1,2] and if the function $F:[1,2] \to \mathbb{R}$, defined by $F(x) = \int_{1}^{x} f(t) dt$ for all $x \in [1,2]$, is differentiable on [1,2], then it is necessary that F'(x) = f(x) for all $x \in [1,2]$.

5. Let
$$(x_n)$$
 be a sequence in \mathbb{R} such that $\lim_{n \to \infty} \left| x_n + 3\left(\frac{n}{n+1}\right)^n \right|^{\frac{1}{n}} = \frac{2}{3}$. Determine $\lim_{n \to \infty} x_n$. [2]

6. Determine all $p \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n^p}$ is convergent. [3]

- 7. If $f: [-1,1] \to \mathbb{R}$ is a continuous function, then show that there exists $c \in [-1,1]$ such that $|f(c)| = \frac{1}{4} \Big(|f(-1)| + 2|f(0)| + |f(1)| \Big).$ [4]
- 8. Let $f : [0,1] \to \mathbb{R}$ be a differentiable function such that f(0) = 0 and f(1) = 1. Show that there exist $a, b \in (0,1)$ with $a \neq b$ such that $\frac{1}{f'(a)} + \frac{1}{f'(b)} = 2$. [4]
- 9. Show that the Taylor series of $\log(1 + x)$ about x = 0 converges to $\log(1 + x)$ for each $x \in (-\frac{1}{2}, 1)$. [4]
- 10. Evaluate: $\lim_{x \to \infty} \left[(x+1)^{\frac{x+2}{x+1}} x^{\frac{x+1}{x}} \right]$ [4]
- 11. Examine whether the improper integral $\int_{1}^{\infty} \frac{\sqrt{x+3}}{(x+2)\sqrt{x^2-1}} dx$ is convergent. [4]
- 12. Find the area of the region that is inside the circle $r = 3\sin\theta$ and outside the cardioid $r = 3(1 + \cos\theta)$. [3]
- 13. The region enclosed by the triangle with vertices (1,1), (2,3), and (3,2) in the *xy*-plane is revolved about the *x*-axis to generate a solid. Find the volume of the solid. [2]