Indian Institute of Technology Guwahati

End-semester Examination

MA 101 (Mathematics I)
Maximum Marks : 50
Date : November 26, 2017
Time : $2 \mathrm{pm}-5 \mathrm{pm}$
No mark will be given for writing only TRUE or FALSE (without justification) in Questions 1 and 4.
For Questions 1 and 3, $M_{n, n}(\mathbb{R})$ denotes the vector space of all $n \times n$ matrices with entries from \mathbb{R}.

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) The set $V=\left\{B \in M_{4,4}(\mathbb{R}): \operatorname{det}(B)<100\right\}$ is a subspace of $M_{4,4}(\mathbb{R})$.
(b) If U is the subset of $M_{5,5}(\mathbb{R})$ consisting of all matrices of rank at most 3, then U is a subspace of $M_{5,5}(\mathbb{R})$.
2. Let $\mathcal{P}_{2}(\mathbb{R})$ be the vector space of all polynomials of degree at most 2 with coefficients in \mathbb{R}. Consider the map $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$, where

$$
\begin{aligned}
T\left(1+x^{2}\right) & =1-x^{2} \\
T(-1-2 x) & =-1+2 x \\
T\left(x-3 x^{2}\right) & =x+c x^{2} \\
T\left(1-5 x+6 x^{2}\right) & =1+3 x-6 x^{2} .
\end{aligned}
$$

If T is a linear transformation, determine all possible values of $c \in \mathbb{R}$.
3. Let W denote the vector subspace of $M_{3,3}(\mathbb{R})$ consisting of all skew-symmetric matrices.
(a) Write down a basis for W (no justification is required).
(b) Consider the linear transformation $S: W \rightarrow \mathbb{R}^{3}$ given by

$$
S(A)=A\left[\begin{array}{r}
1 \tag{2}\\
1 \\
-1
\end{array}\right] \quad \forall A \in W
$$

Determine a basis for range (S) (with proper justification).
(c) For S as above, determine the dimension of $\operatorname{ker}(S)=\{A \in W: S(A)=0\}$ with proper justification.
4. State TRUE or FALSE giving proper justification for each of the following statements. $[2 \times 5]$
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that both $\lim _{x \rightarrow 1+} \frac{f(x)-f(1)}{x-1}$ and $\lim _{x \rightarrow 1-} \frac{f(x)-f(1)}{x-1}$ exist (in \mathbb{R}), then f must be continuous at 1 .
(b) If $\left(x_{n}\right)$ is a sequence in \mathbb{R} such that for each $m \in \mathbb{N}$ with $m>1$, the subsequence $\left(x_{m n}\right)$ of $\left(x_{n}\right)$ is convergent, then $\left(x_{n}\right)$ must be convergent.
(c) There exists a power series $\sum_{n=0}^{\infty} a_{n}(x-3)^{n}$ which is conditionally convergent for $x=-5$ and divergent for $x=8$.
(d) There exists a continuous function $f:[1,2] \rightarrow \mathbb{R}$ which is differentiable on $(1,2)$ but not differentiable at 1 and 2 .
(e) If $f:[1,2] \rightarrow \mathbb{R}$ is Riemann integrable on $[1,2]$ and if the function $F:[1,2] \rightarrow \mathbb{R}$, defined by $F(x)=\int_{1}^{x} f(t) d t$ for all $x \in[1,2]$, is differentiable on [1,2], then it is necessary that $F^{\prime}(x)=f(x)$ for all $x \in[1,2]$.
5. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} such that $\lim _{n \rightarrow \infty}\left|x_{n}+3\left(\frac{n}{n+1}\right)^{n}\right|^{\frac{1}{n}}=\frac{2}{3}$. Determine $\lim _{n \rightarrow \infty} x_{n}$. [2]
6. Determine all $p \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n^{p}}$ is convergent.
7. If $f:[-1,1] \rightarrow \mathbb{R}$ is a continuous function, then show that there exists $c \in[-1,1]$ such that $|f(c)|=\frac{1}{4}(|f(-1)|+2|f(0)|+|f(1)|)$.
8. Let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function such that $f(0)=0$ and $f(1)=1$. Show that there exist $a, b \in(0,1)$ with $a \neq b$ such that $\frac{1}{f^{\prime}(a)}+\frac{1}{f^{\prime}(b)}=2$.
9. Show that the Taylor series of $\log (1+x)$ about $x=0$ converges to $\log (1+x)$ for each $x \in\left(-\frac{1}{2}, 1\right)$.
10. Evaluate: $\lim _{x \rightarrow \infty}\left[(x+1)^{\frac{x+2}{x+1}}-x^{\frac{x+1}{x}}\right]$
11. Examine whether the improper integral $\int_{1}^{\infty} \frac{\sqrt{x+3}}{(x+2) \sqrt{x^{2}-1}} d x$ is convergent.
12. Find the area of the region that is inside the circle $r=3 \sin \theta$ and outside the cardioid $r=3(1+\cos \theta)$.
13. The region enclosed by the triangle with vertices $(1,1),(2,3)$, and $(3,2)$ in the $x y$-plane is revolved about the x-axis to generate a solid. Find the volume of the solid.

