
Riemann Integral: Motivation

Partition of [a, b]: A finite set {x0, x1, ..., xn} ⊂ [a, b] such that
a = x0 < x1 < · · · < xn = b.

Upper sum & Lower sum: Let f : [a, b]→ R be bounded.

For a partition P = {x0, x1, ..., xn} of [a, b], let

Mi = sup{f (x) : x ∈ [xi−1, xi ]},
mi = inf{f (x) : x ∈ [xi−1, xi ]} for i = 1, 2, ..., n

U(f ,P) =
n∑

i=1

Mi(xi − xi−1) – Upper sum of f for P

L(f ,P) =
n∑

i=1

mi(xi − xi−1) – Lower sum of f for P
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Example: Let f (x) = x4 − 4x3 + 10 for all x ∈ [1, 4]. Then for
the partition P = {1, 2, 3, 4} of [1, 4],
U(f ,P) = 11 and L(f ,P) = −40.

m(b − a) ≤ L(f ,P) ≤ U(f ,P) ≤ M(b − a), where

M = sup{f (x) : x ∈ [a, b]} and m = inf{f (x) : x ∈ [a, b]}.

Upper integral:
b̄∫
a

f = inf
P
U(f ,P)

Lower integral:
b∫
a

f = sup
P

L(f ,P)

Riemann integral: If Upper integral = Lower integral, then f is
Riemann integrable on [a, b] and the common value is the

Riemann integral of f on [a, b], denoted by
b∫
a

f .
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Examples:

(a) f (x) = k for all x ∈ [0, 1].

(b) Let f (x) =

{
0 if x ∈ (0, 1],
1 if x = 0.

(c) Let f (x) =

{
1 if x ∈ [0, 1] ∩Q,
0 if x ∈ [0, 1] ∩ (R \Q).

(d) f (x) = x for all x ∈ [0, 1].

(e) f (x) = x2 for all x ∈ [0, 1].

Remark: Let f : [a, b]→ R be bounded. Let there exist a
sequence (Pn) of partitions of [a, b] such that L(f ,Pn)→ α

and U(f ,Pn)→ α. Then f ∈ R[a, b] and
b∫
a

f = α.
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Riemann’s criterion for integrability: A bounded function
f : [a, b]→ R is Riemann integrable on [a, b] iff for each
ε > 0, there exists a partition P of [a, b] such that
U(f ,P)− L(f ,P) < ε.

Some Riemann integrable functions:

(a) A continuous function on [a, b]

(b) A bounded function on [a, b] which is continuous except
at finitely many points in [a, b]

(c) A monotonic function on [a, b]

Properties of Riemann integrable functions:

Example: 1
3
√

2
≤

1∫
0

x2
√

1+x
dx ≤ 1

3
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First fundamental theorem of calculus: Let f : [a, b]→ R be

Riemann integrable on [a, b] and let F (x) =
x∫
a

f (t) dt for all

x ∈ [a, b]. Then F : [a, b]→ R is continuous.

Also, if f is continuous at x0 ∈ [a, b], then F is differentiable
at x0 and F ′(x0) = f (x0).

Second fundamental theorem of calculus: Let f : [a, b]→ R
be Riemann integrable on [a, b]. If there exists a differentiable
function F : [a, b]→ R such that F ′(x) = f (x) for all

x ∈ [a, b], then
b∫
a

f (x) dx = F (b)− F (a).
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Riemann sum: S(f ,P) =
n∑

i=1

f (ci)(xi − xi−1),

where f : [a, b]→ R is bounded,

P = {x0, x1, ..., xn} is a partition of [a, b],

and ci ∈ [xi−1, xi ] for i = 1, 2, ..., n.

Result: A bounded function f : [a, b]→ R is Riemann
integrable on [a, b] iff lim

‖P‖→0
S(f ,P) exists in R.

Also, in this case,
b∫
a

f = lim
‖P‖→0

S(f ,P).

Example: lim
n→∞

[ 1
n+1

+ 1
n+2

+ · · ·+ 1
n+n

] = log 2.
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Improper integrals:

(a) Type I : The interval of integration is infinite

(b) Type II : The integrand is unbounded in the (finite)
interval of integration

Also, combination of Type I and Type II is possible.

Convergence of Type I improper integrals:

Let f ∈ R[a, x ] for all x > a. If lim
x→∞

x∫
a

f (t) dt exists in R,

then
∞∫
a

f (t) dt converges and
∞∫
a

f (t) dt = lim
x→∞

x∫
a

f (t) dt.

Otherwise,
∞∫
a

f (t) dt is divergent.

Similarly, we define convergence of
b∫
−∞

f (t) dt and
∞∫
−∞

f (t) dt.
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Let f ∈ R[a, x ] for all x > a. If lim
x→∞

x∫
a

f (t) dt exists in R,

then
∞∫
a

f (t) dt converges and
∞∫
a

f (t) dt = lim
x→∞

x∫
a

f (t) dt.

Otherwise,
∞∫
a

f (t) dt is divergent.

Similarly, we define convergence of
b∫
−∞

f (t) dt and
∞∫
−∞

f (t) dt.
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Comparison test: Let 0 ≤ f (t) ≤ g(t) for all x ≥ a. If
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g(t) dt converges, then
∞∫
a

f (t) dt converges.

Limit comparison test: Let f (t) ≥ 0 let g(t) > 0 for all t ≥ a

and let lim
t→∞

f (t)
g(t)

= ` ∈ R.

(a) If ` 6= 0, then
∞∫
a

f (t) dt converges iff
∞∫
a

g(t) dt converges.

(b) If ` = 0, then
∞∫
a

f (t) dt converges if
∞∫
a

g(t) dt converges.
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t
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Absolute convergence: If
∞∫
a

|f (t)| dt converges, then
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f (t) dt

converges.

Example:
∞∫
0

cos t
1+t2 dt converges.

Integral test for series: Let f : [1,∞)→ R be a positive

decreasing function. Then
∞∑
n=1

f (n) converges iff
∞∫
1

f (t) dt

converges.
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Dirichlet’s test: Let f : [a,∞)→ R and g : [a,∞)→ R such
that

(a) f is decreasing and lim
t→∞

f (t) = 0, and

(b) g is continuous and there exists M > 0 such that∣∣∣∣ x∫
a

g(t) dt

∣∣∣∣ ≤ M for all x ≥ a.

Then
∞∫
a

f (t)g(t) dt converges.

Example:
∞∫
1

sin t
t

dt converges.

Convergence of Type II and mixed type improper integrals:

Example:
1∫

0

1
tp
dt converges iff p < 1.
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Lengths of smooth curves:

(a) Let y = f (x), where f : [a, b]→ R is such that f ′ is
continuous.

Then L =
b∫
a

√
1 + (f ′(x))2 dx

(b) Let x = ϕ(t), y = ψ(t), where ϕ : [a, b]→ R and
ψ : [a, b]→ R are such that ϕ′ and ψ′ are continuous.

Then L =
b∫
a

√
(ϕ′(t))2 + (ψ′(t))2 dt

(c) Let r = f (θ), where f : [α, β]→ R is such that f ′ is
continuous.

Then L =
β∫
α

√
r 2 + (f ′(θ))2 dθ
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Examples:

(a) The length of the curve y = 1
3
(x2 + 2)

3
2 from x = 0 to

x = 3 is 12.

(b) The perimeter of the ellipse x2

a2 + y2

b2 = 1.

(c) The length of the curve x = et sin t, y = et cos t,
0 ≤ t ≤ π

2
, is
√

2(e
π
2 − 1).

(d) The length of the cardioid r = 1− cos θ is 8.

Area between two curves: If f , g : [a, b]→ R are continuous
and f (x) ≥ g(x) for all x ∈ [a, b], then we define the area
between y = f (x) and y = g(x) from a to b to be
b∫
a

(f (x)− g(x)) dx .

Example: The area above the x-axis which is included between
the parabola y 2 = ax and the circle x2 + y 2 = 2ax , where
a > 0, is ( 3π−8

12
)a2.
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Area in polar coordinates: Let f ; [α, β]→ R be continuous.
We define the area bounded by r = f (θ) and the lines θ = α

and θ = β to be 1
2

β∫
α

(f (θ))2 dθ.

Example: The area of the region that is inside the cardioid
r = a(1 + cos θ) and also inside the circle r = 3

2
a.

Volume by slicing: V =
b∫
a

A(x) dx .

Example: A solid lies between planes perpendicular to the
x-axis at x = 0 and x = 4. The cross sections perpendicular
to the axis on the interval 0 ≤ x ≤ 4 are squares whose
diagonals run from the parabola y = −

√
x to the parabola

y =
√
x . Then the volume of the solid is 16.
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Volume of solid of revolution: V =
b∫
a

π(f (x))2 dx .

Example: The volume of a sphere of radius r is 4
3
πr 3.

Volume by washer method: V =
b∫
a

π((f (x))2 − (g(x))2) dx

Example: A round hole of radius
√

3 is bored through the
centre of a solid sphere of radius 2. Then the volume of the
portion bored out is 28

3
π.

Area of surface of revolution: S =
b∫
a

2πf (x)
√

1 + (f ′(x))2 dx .

Example: The volume and area of the curved surface of a
paraboloid of revolution formed by revolving the parabola
y 2 = 4ax about the x-axis, and bounded by the section x = x1.
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