Riemann Integral: Motivation

Riemann Integral: Motivation
Partition of $[a, b]$: A finite set $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subset[a, b]$ such that $a=x_{0}<x_{1}<\cdots<x_{n}=b$.

Riemann Integral: Motivation
Partition of $[a, b]$: A finite set $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subset[a, b]$ such that $a=x_{0}<x_{1}<\cdots<x_{n}=b$.

Upper sum \& Lower sum: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded.

Riemann Integral: Motivation

Partition of $[a, b]$: A finite set $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subset[a, b]$ such that $a=x_{0}<x_{1}<\cdots<x_{n}=b$.

Upper sum \& Lower sum: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded.
For a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$, let
$M_{i}=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}$,
$m_{i}=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}$ for $i=1,2, \ldots, n$

Riemann Integral: Motivation

Partition of $[a, b]$: A finite set $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subset[a, b]$ such that $a=x_{0}<x_{1}<\cdots<x_{n}=b$.

Upper sum \& Lower sum: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded.
For a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$, let
$M_{i}=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}$,
$m_{i}=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}$ for $i=1,2, \ldots, n$
$U(f, P)=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)-$ Upper sum of f for P

Riemann Integral: Motivation

Partition of $[a, b]$: A finite set $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subset[a, b]$ such that $a=x_{0}<x_{1}<\cdots<x_{n}=b$.

Upper sum \& Lower sum: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded.
For a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$, let
$M_{i}=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}$,
$m_{i}=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}$ for $i=1,2, \ldots, n$
$U(f, P)=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)-$ Upper sum of f for P
$L(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)-$ Lower sum of f for P

Example: Let $f(x)=x^{4}-4 x^{3}+10$ for all $x \in[1,4]$. Then for the partition $P=\{1,2,3,4\}$ of $[1,4]$, $U(f, P)=11$ and $L(f, P)=-40$.

Example: Let $f(x)=x^{4}-4 x^{3}+10$ for all $x \in[1,4]$. Then for the partition $P=\{1,2,3,4\}$ of $[1,4]$,
$U(f, P)=11$ and $L(f, P)=-40$.
$m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$, where $M=\sup \{f(x): x \in[a, b]\}$ and $m=\inf \{f(x): x \in[a, b]\}$.

Example: Let $f(x)=x^{4}-4 x^{3}+10$ for all $x \in[1,4]$. Then for the partition $P=\{1,2,3,4\}$ of $[1,4]$,
$U(f, P)=11$ and $L(f, P)=-40$.
$m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$, where $M=\sup \{f(x): x \in[a, b]\}$ and $m=\inf \{f(x): x \in[a, b]\}$.

Upper integral: $\int_{a}^{\bar{b}} f=\inf _{P} U(f, P)$

Example: Let $f(x)=x^{4}-4 x^{3}+10$ for all $x \in[1,4]$. Then for the partition $P=\{1,2,3,4\}$ of $[1,4]$,
$U(f, P)=11$ and $L(f, P)=-40$.
$m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$, where $M=\sup \{f(x): x \in[a, b]\}$ and $m=\inf \{f(x): x \in[a, b]\}$.

Upper integral: $\int_{a}^{\bar{b}} f=\inf _{P} U(f, P)$
Lower integral: $\int_{\underline{a}}^{b} f=\sup _{P} L(f, P)$

Example: Let $f(x)=x^{4}-4 x^{3}+10$ for all $x \in[1,4]$. Then for the partition $P=\{1,2,3,4\}$ of $[1,4]$,
$U(f, P)=11$ and $L(f, P)=-40$.
$m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$, where $M=\sup \{f(x): x \in[a, b]\}$ and $m=\inf \{f(x): x \in[a, b]\}$.

Upper integral: $\int_{a}^{\bar{b}} f=\inf _{P} U(f, P)$
Lower integral: $\int_{\underline{a}}^{b} f=\sup _{P} L(f, P)$
Riemann integral: If Upper integral $=$ Lower integral, then f is Riemann integrable on $[a, b]$ and the common value is the Riemann integral of f on $[a, b]$, denoted by $\int_{a}^{b} f$.

Examples:
(a) $f(x)=k$ for all $x \in[0,1]$.

Examples:
(a) $f(x)=k$ for all $x \in[0,1]$.
(b) Let $f(x)= \begin{cases}0 & \text { if } x \in(0,1], \\ 1 & \text { if } x=0 .\end{cases}$

Examples:
(a) $f(x)=k$ for all $x \in[0,1]$.
(b) Let $f(x)= \begin{cases}0 & \text { if } x \in(0,1], \\ 1 & \text { if } x=0 .\end{cases}$
(c) Let $f(x)= \begin{cases}1 & \text { if } x \in[0,1] \cap \mathbb{Q}, \\ 0 & \text { if } x \in[0,1] \cap(\mathbb{R} \backslash \mathbb{Q}) \text {. }\end{cases}$

Examples:
(a) $f(x)=k$ for all $x \in[0,1]$.
(b) Let $f(x)= \begin{cases}0 & \text { if } x \in(0,1], \\ 1 & \text { if } x=0 .\end{cases}$
(c) Let $f(x)= \begin{cases}1 & \text { if } x \in[0,1] \cap \mathbb{Q}, \\ 0 & \text { if } x \in[0,1] \cap(\mathbb{R} \backslash \mathbb{Q}) \text {. }\end{cases}$
(d) $f(x)=x$ for all $x \in[0,1]$.

Examples:
(a) $f(x)=k$ for all $x \in[0,1]$.
(b) Let $f(x)= \begin{cases}0 & \text { if } x \in(0,1] \text {, } \\ 1 & \text { if } x=0 .\end{cases}$
(c) Let $f(x)= \begin{cases}1 & \text { if } x \in[0,1] \cap \mathbb{Q}, \\ 0 & \text { if } x \in[0,1] \cap(\mathbb{R} \backslash \mathbb{Q}) \text {. }\end{cases}$
(d) $f(x)=x$ for all $x \in[0,1]$.
(e) $f(x)=x^{2}$ for all $x \in[0,1]$.

Examples:
(a) $f(x)=k$ for all $x \in[0,1]$.
(b) Let $f(x)= \begin{cases}0 & \text { if } x \in(0,1], \\ 1 & \text { if } x=0 .\end{cases}$
(c) Let $f(x)= \begin{cases}1 & \text { if } x \in[0,1] \cap \mathbb{Q}, \\ 0 & \text { if } x \in[0,1] \cap(\mathbb{R} \backslash \mathbb{Q}) \text {. }\end{cases}$
(d) $f(x)=x$ for all $x \in[0,1]$.
(e) $f(x)=x^{2}$ for all $x \in[0,1]$.

Remark: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Let there exist a sequence $\left(P_{n}\right)$ of partitions of $[a, b]$ such that $L\left(f, P_{n}\right) \rightarrow \alpha$ and $U\left(f, P_{n}\right) \rightarrow \alpha$. Then $f \in \mathcal{R}[a, b]$ and $\int_{a}^{b} f=\alpha$.

Riemann's criterion for integrability: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff for each $\varepsilon>0$, there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$.

Riemann's criterion for integrability: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff for each $\varepsilon>0$, there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$.

Some Riemann integrable functions:

Riemann's criterion for integrability: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff for each $\varepsilon>0$, there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$.

Some Riemann integrable functions:
(a) A continuous function on $[a, b]$

Riemann's criterion for integrability: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff for each $\varepsilon>0$, there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$.

Some Riemann integrable functions:
(a) A continuous function on $[a, b]$
(b) A bounded function on $[a, b]$ which is continuous except at finitely many points in $[a, b]$

Riemann's criterion for integrability: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff for each $\varepsilon>0$, there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$.

Some Riemann integrable functions:
(a) A continuous function on $[a, b]$
(b) A bounded function on $[a, b]$ which is continuous except at finitely many points in $[a, b]$
(c) A monotonic function on $[a, b]$

Riemann's criterion for integrability: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff for each $\varepsilon>0$, there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$.

Some Riemann integrable functions:
(a) A continuous function on $[a, b]$
(b) A bounded function on $[a, b]$ which is continuous except at finitely many points in $[a, b]$
(c) A monotonic function on $[a, b]$

Properties of Riemann integrable functions:

Riemann's criterion for integrability: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff for each $\varepsilon>0$, there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\varepsilon$.

Some Riemann integrable functions:
(a) A continuous function on $[a, b]$
(b) A bounded function on $[a, b]$ which is continuous except at finitely many points in $[a, b]$
(c) A monotonic function on $[a, b]$

Properties of Riemann integrable functions:
Example: $\frac{1}{3 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x}} d x \leq \frac{1}{3}$

First fundamental theorem of calculus: Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable on $[a, b]$ and let $F(x)=\int_{a} f(t) d t$ for all $x \in[a, b]$. Then $F:[a, b] \rightarrow \mathbb{R}$ is continuous.

First fundamental theorem of calculus: Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable on $[a, b]$ and let $F(x)=\int_{a} f(t) d t$ for all $x \in[a, b]$. Then $F:[a, b] \rightarrow \mathbb{R}$ is continuous.
Also, if f is continuous at $x_{0} \in[a, b]$, then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

First fundamental theorem of calculus: Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable on $[a, b]$ and let $F(x)=\int_{a} f(t) d t$ for all $x \in[a, b]$. Then $F:[a, b] \rightarrow \mathbb{R}$ is continuous.
Also, if f is continuous at $x_{0} \in[a, b]$, then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

Second fundamental theorem of calculus: Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable on $[a, b]$. If there exists a differentiable function $F:[a, b] \rightarrow \mathbb{R}$ such that $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$, then $\int_{a} f(x) d x=F(b)-F(a)$.

Riemann sum: $S(f, P)=\sum_{i=1}^{n} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)$,
where $f:[a, b] \rightarrow \mathbb{R}$ is bounded,
$P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$,
and $c_{i} \in\left[x_{i-1}, x_{i}\right]$ for $i=1,2, \ldots, n$.

Riemann sum: $S(f, P)=\sum_{i=1}^{n} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)$,
where $f:[a, b] \rightarrow \mathbb{R}$ is bounded,
$P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$,
and $c_{i} \in\left[x_{i-1}, x_{i}\right]$ for $i=1,2, \ldots, n$.
Result: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff $\lim _{\|P\| \rightarrow 0} S(f, P)$ exists in \mathbb{R}.

Riemann sum: $S(f, P)=\sum_{i=1}^{n} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)$,
where $f:[a, b] \rightarrow \mathbb{R}$ is bounded,
$P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$,
and $c_{i} \in\left[x_{i-1}, x_{i}\right]$ for $i=1,2, \ldots, n$.
Result: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff $\lim _{\|P\| \rightarrow 0} S(f, P)$ exists in \mathbb{R}.
Also, in this case, $\int_{a}^{b} f=\lim _{\|P\| \rightarrow 0} S(f, P)$.

Riemann sum: $S(f, P)=\sum_{i=1}^{n} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)$,
where $f:[a, b] \rightarrow \mathbb{R}$ is bounded,
$P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$,
and $c_{i} \in\left[x_{i-1}, x_{i}\right]$ for $i=1,2, \ldots, n$.
Result: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ iff $\lim _{\|P\| \rightarrow 0} S(f, P)$ exists in \mathbb{R}.
Also, in this case, $\int_{a}^{b} f=\lim _{\|P\| \rightarrow 0} S(f, P)$.
Example: $\lim _{n \rightarrow \infty}\left[\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right]=\log 2$.

Improper integrals:

Improper integrals:
(a) Type I: The interval of integration is infinite

Improper integrals:
(a) Type I: The interval of integration is infinite
(b) Type II: The integrand is unbounded in the (finite) interval of integration

Improper integrals:
(a) Type I: The interval of integration is infinite
(b) Type II: The integrand is unbounded in the (finite) interval of integration

Also, combination of Type I and Type II is possible.

Improper integrals:
(a) Type I: The interval of integration is infinite
(b) Type II: The integrand is unbounded in the (finite) interval of integration

Also, combination of Type I and Type II is possible.
Convergence of Type I improper integrals:
Let $f \in \mathcal{R}[a, x]$ for all $x>a$. If $\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t$ exists in \mathbb{R},
then $\int_{a}^{\infty} f(t) d t$ converges and $\int_{a}^{\infty} f(t) d t=\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t$.

Improper integrals:
(a) Type I: The interval of integration is infinite
(b) Type II: The integrand is unbounded in the (finite) interval of integration

Also, combination of Type I and Type II is possible.
Convergence of Type I improper integrals:
Let $f \in \mathcal{R}[a, x]$ for all $x>a$. If $\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t$ exists in \mathbb{R},
then $\int_{a}^{\infty} f(t) d t$ converges and $\int_{a}^{\infty} f(t) d t=\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t$.
Otherwise, $\int_{a}^{\infty} f(t) d t$ is divergent.

Improper integrals:
(a) Type I: The interval of integration is infinite
(b) Type II: The integrand is unbounded in the (finite) interval of integration

Also, combination of Type I and Type II is possible.
Convergence of Type I improper integrals:
Let $f \in \mathcal{R}[a, x]$ for all $x>a$. If $\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t$ exists in \mathbb{R},
then $\int_{a}^{\infty} f(t) d t$ converges and $\int_{a}^{\infty} f(t) d t=\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t$.
Otherwise, $\int_{a}^{\infty} f(t) d t$ is divergent.
Similarly, we define convergence of $\int_{-\infty}^{b} f(t) d t$ and $\int_{-\infty}^{\infty} f(t) d t$.

Examples: (a) $\int_{1}^{\infty} \frac{1}{t^{p}} d t$ converges iff $p>1$.
$\begin{array}{ll}\text { (b) } \int_{-\infty}^{\infty} e^{t} d t & \text { (c) } \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\end{array}$

Examples: (a) $\int_{1}^{\infty} \frac{1}{t^{p}} d t$ converges iff $p>1$.
$\begin{array}{ll}\text { (b) } \int_{-\infty}^{\infty} e^{t} d t & \text { (c) } \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\end{array}$
Comparison test: Let $0 \leq f(t) \leq g(t)$ for all $x \geq a$. If $\int_{a}^{\infty} g(t) d t$ converges, then $\int_{a}^{\infty} f(t) d t$ converges.

Examples: (a) $\int_{1}^{\infty} \frac{1}{t^{p}} d t$ converges iff $p>1$.
$\begin{array}{ll}\text { (b) } \int_{-\infty}^{\infty} e^{t} d t & \text { (c) } \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\end{array}$
Comparison test: Let $0 \leq f_{\infty}(t) \leq g(t)$ for all $x \geq a$. If $\int_{a}^{\infty} g(t) d t$ converges, then $\int_{a}^{\infty} f(t) d t$ converges.

Limit comparison test: Let $f(t) \geq 0$ let $g(t)>0$ for all $t \geq a$ and let $\lim _{t \rightarrow \infty} \frac{f(t)}{g(t)}=\ell \in \mathbb{R}$.

Examples: (a) $\int_{1}^{\infty} \frac{1}{t^{p}} d t$ converges iff $p>1$.
(b) $\int_{-\infty}^{\infty} e^{t} d t$
(c) $\int_{0}^{\infty} \frac{1}{1+t^{2}} d t$
 $\int_{a}^{\infty} g(t) d t$ converges, then $\int_{a}^{\infty} f(t) d t$ converges.

Limit comparison test: Let $f(t) \geq 0$ let $g(t)>0$ for all $t \geq a$ and let $\lim _{t \rightarrow \infty} \frac{f(t)}{g(t)}=\ell \in \mathbb{R}$.
(a) If $\ell \neq 0$, then $\int_{a}^{\infty} f(t) d t$ converges iff $\int_{a}^{\infty} g(t) d t$ converges.
(b) If $\ell=0$, then $\int_{a}^{\infty} f(t) d t$ converges if $\int_{a}^{\infty} g(t) d t$ converges.

Examples: (a) $\int_{1}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t \quad$ (b) $\int_{1}^{\infty} \frac{d t}{t \sqrt{1+t^{2}}}$

Examples: (a) $\int_{1}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t \quad$ (b) $\int_{1}^{\infty} \frac{d t}{t \sqrt{1+t^{2}}}$
Absolute convergence: If $\int_{a}^{\infty}|f(t)| d t$ converges, then $\int_{a}^{\infty} f(t) d t$ converges.

Examples: (a) $\int_{1}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t \quad$ (b) $\int_{1}^{\infty} \frac{d t}{t \sqrt{1+t^{2}}}$
Absolute convergence: If $\int_{a}^{\infty}|f(t)| d t$ converges, then $\int_{a}^{\infty} f(t) d t$ converges.

Example: $\int_{0}^{\infty} \frac{\cos t}{1+t^{2}} d t$ converges.

Examples: (a) $\int_{1}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t \quad$ (b) $\int_{1}^{\infty} \frac{d t}{t \sqrt{1+t^{2}}}$
Absolute convergence: If $\int_{a}^{\infty}|f(t)| d t$ converges, then $\int_{a}^{\infty} f(t) d t$ converges.

Example: $\int_{0}^{\infty} \frac{\cos t}{1+t^{2}} d t$ converges.
Integral test for series: Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a positive decreasing function. Then $\sum_{n=1}^{\infty} f(n)$ converges iff $\int_{1}^{\infty} f(t) d t$ converges.

Dirichlet's test: Let $f:[a, \infty) \rightarrow \mathbb{R}$ and $g:[a, \infty) \rightarrow \mathbb{R}$ such that
(a) f is decreasing and $\lim _{t \rightarrow \infty} f(t)=0$, and
(b) g is continuous and there exists $M>0$ such that

$$
\left|\int_{a}^{x} g(t) d t\right| \leq M \text { for all } x \geq a
$$

Then $\int_{a}^{\infty} f(t) g(t) d t$ converges.

Dirichlet's test: Let $f:[a, \infty) \rightarrow \mathbb{R}$ and $g:[a, \infty) \rightarrow \mathbb{R}$ such that
(a) f is decreasing and $\lim _{t \rightarrow \infty} f(t)=0$, and
(b) g is continuous and there exists $M>0$ such that

$$
\left|\int_{a}^{x} g(t) d t\right| \leq M \text { for all } x \geq a .
$$

Then $\int_{a}^{\infty} f(t) g(t) d t$ converges.
Example: $\int_{1}^{\infty} \frac{\sin t}{t} d t$ converges.

Dirichlet's test: Let $f:[a, \infty) \rightarrow \mathbb{R}$ and $g:[a, \infty) \rightarrow \mathbb{R}$ such that
(a) f is decreasing and $\lim _{t \rightarrow \infty} f(t)=0$, and
(b) g is continuous and there exists $M>0$ such that

$$
\left|\int_{a}^{x} g(t) d t\right| \leq M \text { for all } x \geq a \text {. }
$$

Then $\int_{a}^{\infty} f(t) g(t) d t$ converges.
Example: $\int_{1}^{\infty} \frac{\sin t}{t} d t$ converges.
Convergence of Type II and mixed type improper integrals:

Dirichlet's test: Let $f:[a, \infty) \rightarrow \mathbb{R}$ and $g:[a, \infty) \rightarrow \mathbb{R}$ such that
(a) f is decreasing and $\lim _{t \rightarrow \infty} f(t)=0$, and
(b) g is continuous and there exists $M>0$ such that

$$
\left|\int_{a}^{x} g(t) d t\right| \leq M \text { for all } x \geq a \text {. }
$$

Then $\int_{a}^{\infty} f(t) g(t) d t$ converges.
Example: $\int_{1}^{\infty} \frac{\sin t}{t} d t$ converges.
Convergence of Type II and mixed type improper integrals:
Example: $\int_{0}^{1} \frac{1}{t^{p}} d t$ converges iff $p<1$.

Lengths of smooth curves:
(a) Let $y=f(x)$, where $f:[a, b] \rightarrow \mathbb{R}$ is such that f^{\prime} is continuous.
Then $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$

Lengths of smooth curves:
(a) Let $y=f(x)$, where $f:[a, b] \rightarrow \mathbb{R}$ is such that f^{\prime} is continuous.
Then $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(b) Let $x=\varphi(t), y=\psi(t)$, where $\varphi:[a, b] \rightarrow \mathbb{R}$ and $\psi:[a, b] \rightarrow \mathbb{R}$ are such that φ^{\prime} and ψ^{\prime} are continuous.
Then $L=\int_{a}^{b} \sqrt{\left(\varphi^{\prime}(t)\right)^{2}+\left(\psi^{\prime}(t)\right)^{2}} d t$

Lengths of smooth curves:
(a) Let $y=f(x)$, where $f:[a, b] \rightarrow \mathbb{R}$ is such that f^{\prime} is continuous.
Then $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
(b) Let $x=\varphi(t), y=\psi(t)$, where $\varphi:[a, b] \rightarrow \mathbb{R}$ and $\psi:[a, b] \rightarrow \mathbb{R}$ are such that φ^{\prime} and ψ^{\prime} are continuous.
Then $L=\int_{a}^{b} \sqrt{\left(\varphi^{\prime}(t)\right)^{2}+\left(\psi^{\prime}(t)\right)^{2}} d t$
(c) Let $r=f(\theta)$, where $f:[\alpha, \beta] \rightarrow \mathbb{R}$ is such that f^{\prime} is continuous.
Then $L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(f^{\prime}(\theta)\right)^{2}} d \theta$

Examples:

(a) The length of the curve $y=\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}}$ from $x=0$ to $x=3$ is 12 .

Examples:

(a) The length of the curve $y=\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}}$ from $x=0$ to $x=3$ is 12 .
(b) The perimeter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Examples:

(a) The length of the curve $y=\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}}$ from $x=0$ to $x=3$ is 12 .
(b) The perimeter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(c) The length of the curve $x=e^{t} \sin t, y=e^{t} \cos t$, $0 \leq t \leq \frac{\pi}{2}$, is $\sqrt{2}\left(e^{\frac{\pi}{2}}-1\right)$.

Examples:

(a) The length of the curve $y=\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}}$ from $x=0$ to $x=3$ is 12 .
(b) The perimeter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(c) The length of the curve $x=e^{t} \sin t, y=e^{t} \cos t$, $0 \leq t \leq \frac{\pi}{2}$, is $\sqrt{2}\left(e^{\frac{\pi}{2}}-1\right)$.
(d) The length of the cardioid $r=1-\cos \theta$ is 8 .

Examples:

(a) The length of the curve $y=\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}}$ from $x=0$ to $x=3$ is 12 .
(b) The perimeter of the ellipse $\frac{x^{2}}{d^{2}}+\frac{y^{2}}{b^{2}}=1$.
(c) The length of the curve $x=e^{t} \sin t, y=e^{t} \cos t$,

$$
0 \leq t \leq \frac{\pi}{2} \text {, is } \sqrt{2}\left(e^{\frac{\pi}{2}}-1\right) \text {. }
$$

(d) The length of the cardioid $r=1-\cos \theta$ is 8 .

Area between two curves: If $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous and $f(x) \geq g(x)$ for all $x \in[a, b]$, then we define the area between $y=f(x)$ and $y=g(x)$ from a to b to be $\int_{a}^{b}(f(x)-g(x)) d x$.

Examples:

(a) The length of the curve $y=\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}}$ from $x=0$ to $x=3$ is 12 .
(b) The perimeter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(c) The length of the curve $x=e^{t} \sin t, y=e^{t} \cos t$,

$$
0 \leq t \leq \frac{\pi}{2}, \text { is } \sqrt{2}\left(e^{\frac{\pi}{2}}-1\right)
$$

(d) The length of the cardioid $r=1-\cos \theta$ is 8 .

Area between two curves: If $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous and $f(x) \geq g(x)$ for all $x \in[a, b]$, then we define the area between $y=f(x)$ and $y=g(x)$ from a to b to be
$\int_{a}^{b}(f(x)-g(x)) d x$.
Example: The area above the x-axis which is included between the parabola $y^{2}=a x$ and the circle $x^{2}+y^{2}=2 a x$, where $a>0$, is $\left(\frac{3 \pi-8}{12}\right) a^{2}$.

Area in polar coordinates: Let $f ;[\alpha, \beta] \rightarrow \mathbb{R}$ be continuous. We define the area bounded by $r=f(\theta)$ and the lines $\theta=\alpha$ and $\theta=\beta$ to be $\frac{1}{2} \int_{\alpha}^{\beta}(f(\theta))^{2} d \theta$.

Area in polar coordinates: Let $f ;[\alpha, \beta] \rightarrow \mathbb{R}$ be continuous. We define the area bounded by $r=f(\theta)$ and the lines $\theta=\alpha$ and $\theta=\beta$ to be $\frac{1}{2} \int_{\alpha}^{\beta}(f(\theta))^{2} d \theta$.

Example: The area of the region that is inside the cardioid $r=a(1+\cos \theta)$ and also inside the circle $r=\frac{3}{2} a$.

Area in polar coordinates: Let $f ;[\alpha, \beta] \rightarrow \mathbb{R}$ be continuous. We define the area bounded by $r=f(\theta)$ and the lines $\theta=\alpha$ and $\theta=\beta$ to be $\frac{1}{2} \int_{\alpha}^{\beta}(f(\theta))^{2} d \theta$.

Example: The area of the region that is inside the cardioid $r=a(1+\cos \theta)$ and also inside the circle $r=\frac{3}{2} a$.

Volume by slicing: $V=\int_{a}^{b} A(x) d x$.

Area in polar coordinates: Let $f ;[\alpha, \beta] \rightarrow \mathbb{R}$ be continuous. We define the area bounded by $r=f(\theta)$ and the lines $\theta=\alpha$
and $\theta=\beta$ to be $\frac{1}{2} \int_{\alpha}^{\beta}(f(\theta))^{2} d \theta$.
Example: The area of the region that is inside the cardioid $r=a(1+\cos \theta)$ and also inside the circle $r=\frac{3}{2} a$.

Volume by slicing: $V=\int_{a}^{b} A(x) d x$.
Example: A solid lies between planes perpendicular to the x-axis at $x=0$ and $x=4$. The cross sections perpendicular to the axis on the interval $0 \leq x \leq 4$ are squares whose diagonals run from the parabola $y=-\sqrt{x}$ to the parabola $y=\sqrt{x}$. Then the volume of the solid is 16 .

Volume of solid of revolution: $V=\int_{a}^{b} \pi(f(x))^{2} d x$.

Volume of solid of revolution: $V=\int_{a}^{b} \pi(f(x))^{2} d x$.
Example: The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.

Volume of solid of revolution: $V=\int_{a}^{b} \pi(f(x))^{2} d x$.
Example: The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.
Volume by washer method: $V=\int_{a}^{b} \pi\left((f(x))^{2}-(g(x))^{2}\right) d x$

Volume of solid of revolution: $V=\int_{a}^{b} \pi(f(x))^{2} d x$.
Example: The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.
Volume by washer method: $V=\int_{a}^{b} \pi\left((f(x))^{2}-(g(x))^{2}\right) d x$
Example: A round hole of radius $\sqrt{3}$ is bored through the centre of a solid sphere of radius 2 . Then the volume of the portion bored out is $\frac{28}{3} \pi$.

Volume of solid of revolution: $V=\int_{a}^{b} \pi(f(x))^{2} d x$.
Example: The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.
Volume by washer method: $V=\int_{a}^{b} \pi\left((f(x))^{2}-(g(x))^{2}\right) d x$
Example: A round hole of radius $\sqrt{3}$ is bored through the centre of a solid sphere of radius 2 . Then the volume of the portion bored out is $\frac{28}{3} \pi$.

Area of surface of revolution: $S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

Volume of solid of revolution: $V=\int_{a}^{b} \pi(f(x))^{2} d x$.
Example: The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.
Volume by washer method: $V=\int_{a}^{b} \pi\left((f(x))^{2}-(g(x))^{2}\right) d x$
Example: A round hole of radius $\sqrt{3}$ is bored through the centre of a solid sphere of radius 2 . Then the volume of the portion bored out is $\frac{28}{3} \pi$.

Area of surface of revolution: $S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.
Example: The volume and area of the curved surface of a paraboloid of revolution formed by revolving the parabola $y^{2}=4 a x$ about the x-axis, and bounded by the section $x=x_{1}$.

