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Riemann integral: If Upper integral = Lower integral, then f is
Riemann integrable on [a, b] and the common value is the

b
Riemann integral of f on [a, b], denoted by [ f.
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Remark: Let f : [a, b] = R be bounded. Let there exist a
sequence (P,) of partitions of [a, b] such that L(f, P,) — «
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at xp and F'(xg) = f(xo).

Second fundamental theorem of calculus: Let f : [a, b] — R
be Riemann integrable on [a, b]. If there exists a differentiable
function F : [a, b] — R such that F'(x) = f(x) for all
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x € [a, b], then [ f(x)dx = F(b) — F(a).
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Integral test for series: Let f : [1,00) — R be a positive
decreasing function. Then > f(n) converges iff [ f(t)dt
n=1 1

converges.
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continuous.
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(b) Let x = ¢(t), y = ¥(t), where ¢ : [a, b] — R and
¥ : [a, b] — R are such that ¢’ and 1)’ are continuous.

Then L = [ (Z(©F £ (D) dt

(c) Let r = £f(0), where f : [a, 5] — R is such that f’ is
continuous.

Then L = fﬁ\/r2 + (f'(0))? do
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Area in polar coordinates: Let f; [, 5] — R be continuous.
We define the area bounded by r = f(6) and the lines § = «

and 0 = 3 to be %f(i‘(@))2 do.

Example: The area of the region that is inside the cardioid
r = a(1l + cosf) and also inside the circle r = %a.

b
Volume by slicing: V = [ A(x) dx.

Example: A solid lies between planes perpendicular to the
x-axis at x = 0 and x = 4. The cross sections perpendicular
to the axis on the interval 0 < x < 4 are squares whose
diagonals run from the parabola y = —,/x to the parabola
y = v/x. Then the volume of the solid is 16.



b
Volume of solid of revolution: V = [ 7(f(x))? dx.

a



b
Volume of solid of revolution: V = [ 7(f(x))? dx.

a

Example: The volume of a sphere of radius r is %7U3.



b
Volume of solid of revolution: V = [ 7(f(x))? dx.

a

Example: The volume of a sphere of radius r is %7U3.

Volume by washer method: V = fﬂ'((f(X))2 — (g(x))?) dx



b
Volume of solid of revolution: V = [ 7(f(x))? dx.

a

Example: The volume of a sphere of radius r is %7U3.

Volume by washer method: V = fﬂ((f(X))2 — (g(x))?) dx

Example: A round hole of radius /3 is bored through the
centre of a solid sphere of radius 2. Then the volume of the
portion bored out is 2.



b
Volume of solid of revolution: V = [ 7(f(x))? dx.

Example: The volume of a sphere of radius r is %7U3.

Volume by washer method: V = fﬂ'((f(X))2 — (g(x))?) dx

Example: A round hole of radius v/3 is bored through the
centre of a solid sphere of radius 2. Then the volume of the
portion bored out is 2

Area of surface of revolution: S = f27rf W14 (F'(x))? dx.

a



b
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Example: The volume of a sphere of radius r is %7U3.

Volume by washer method: V = fﬂ((f(X))2 — (g(x))?) dx

Example: A round hole of radius /3 is bored through the
centre of a solid sphere of radius 2. Then the volume of the
portion bored out is 2

Area of surface of revolution: S = f27rf W14 (F'(x))? dx.

a

Example: The volume and area of the curved surface of a
paraboloid of revolution formed by revolving the parabola
y? = 4ax about the x-axis, and bounded by the section x = x;.



