MA 101 (Mathematics I)
 Marking scheme of Quiz - 2

1. (a) For getting correct answer (FALSE) with proper justification : 2 marks (no partial marks)
The steps $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=0$ and/or $\lim _{n \rightarrow \infty}\left(x_{n}^{3}+y_{n}^{3}\right) \neq 0$ should be justified except possibly in trivial cases.
(b) For getting correct answer (FALSE) with proper justification : 2 marks

First method: For correct approach and getting a convergent subsequence of $(\sin n)$ by using Bolzano-Weierstrass theorem : 1 mark
Second method: For correct approach and concluding that f is bounded on $[-1,1]$ by applying the appropriate result of continuity : 1 mark
(For just writing that $(\sin n)$ is bounded and $\left(\frac{n \pi}{2}\right)$ is unbounded and f is continuous will have no mark.)
2. For showing $x_{n} \geq \sqrt{3}$ for all $n \in \mathbb{N}: 1$ mark (simply calculating first few terms and comparing their values won't do)
For showing $\left(x_{n}\right)$ is decreasing : 1 mark (same comment as above applies here as well) (The fact that $x_{n} \geq \sqrt{3}$ for all $n \in \mathbb{N}$ is used in proving that $\left(x_{n}\right)$ is decreasing. Hence for just showing $x_{n}>0$ for all $n \in \mathbb{N}$ and concluding that $\left(x_{n}\right)$ is bounded below will have no mark unless the decreasing nature of $\left(x_{n}\right)$ is also independently shown.)
If an attempt (although it is not fully correct) is made to show (not for just mentioning) that $x_{n} \geq \sqrt{3}$ for all $n \in \mathbb{N}$ and then this fact is used for showing that $\left(x_{n}\right)$ is decreasing, then 1 mark will be given.
3. For choosing the correct sequence $\left(y_{n}\right)$ and applying limit comparison test (i.e. calculating $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}$): 1 mark
For concluding the correct values (in the form of 'iff' or mentioning both convergence and divergence) of p (after the correct application of limit comparison test) : 1 mark (For obtaining only a partial set of values of p for which convergence takes place, no mark will be given. Thus, in particular, just for obtaining some values of p by applying comparison test instead of limit comparison test will get no mark.)
4. For getting correct conclusion (limit does not exist) with proper justification : 2 marks In order to get the non-existence of limit, if correct approach is followed with minor mistake in case of one sequence only, then 1 mark will be given.
(However, no mark will be given for assuming non-existence of some limits and/or for breaking the terms without giving proper justification.)

The notations/terminologies used here refer to those given in the model solutions.

