MA 101 (Mathematics I) Quiz - 2 Maximum Marks : 10

Date : November 09, 2017

Time : 8 am - 8:50 am

No mark will be given for writing only TRUE or FALSE (without justification) in Question 1.

- 1. State TRUE or FALSE giving proper justification for each of the following statements. $[2 \times 2]$
 - (a) If (x_n) and (y_n) are sequences in \mathbb{R} such that $\lim_{n \to \infty} (x_n + y_n) = 0$, then $\lim_{n \to \infty} (x_n^3 + y_n^3)$ must be equal to 0.
 - (b) There exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f(\sin n) = \frac{n\pi}{2}$ for all $n \in \mathbb{N}$.
- 2. If $x_1 = 2$ and $x_{n+1} = \frac{x_n^2 + 3}{2x_n}$ for all $n \in \mathbb{N}$, then examine whether the sequence (x_n) is convergent. [2]
- 3. Determine all $p \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{n^2 + 2n}{(2n^4 + 1)^p}$ is convergent. [2]

4. Examine whether
$$\lim_{x \to 0} \left(\sin^2 \frac{1}{x} + \cos^4 \frac{1}{x} \right)$$
 exists (in \mathbb{R}). [2]

_____ END _____