MA 101 (Mathematics I)
 Quiz - 2
 Maximum Marks : 10

Date : November 09, 2017
Time : $8 \mathrm{am}-8: 50 \mathrm{am}$

No mark will be given for writing only TRUE or FALSE (without justification) in Question 1.

1. State TRUE or FALSE giving proper justification for each of the following statements. [$\mathbf{2} \times \mathbf{2}$]
(a) If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences in \mathbb{R} such that $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=0$, then $\lim _{n \rightarrow \infty}\left(x_{n}^{3}+y_{n}^{3}\right)$ must be equal to 0 .
(b) There exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(\sin n)=\frac{n \pi}{2}$ for all $n \in \mathbb{N}$.
2. If $x_{1}=2$ and $x_{n+1}=\frac{x_{n}^{2}+3}{2 x_{n}}$ for all $n \in \mathbb{N}$, then examine whether the sequence $\left(x_{n}\right)$ is convergent.
3. Determine all $p \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{n^{2}+2 n}{\left(2 n^{4}+1\right)^{p}}$ is convergent.
4. Examine whether $\lim _{x \rightarrow 0}\left(\sin ^{2} \frac{1}{x}+\cos ^{4} \frac{1}{x}\right)$ exists (in \mathbb{R}).
