## MA 101 (Mathematics I)

## Model Solutions of Quiz - 2

1. Let $x_{n}=n+\frac{1}{n}$ and $y_{n}=-n$ for all $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n}=0$ but $\lim _{n \rightarrow \infty}\left(x_{n}^{3}+y_{n}^{3}\right)=\lim _{n \rightarrow \infty}\left(3 n+\frac{3}{n}+\frac{1}{n^{3}}\right)$ does not exist (in $\mathbb{R}$ ) and hence $\lim _{n \rightarrow \infty}\left(x_{n}^{3}+y_{n}^{3}\right) \neq 0$. Therefore the given statement is FALSE.
(For a similar example, where $\lim _{n \rightarrow \infty}\left(x_{n}^{3}+y_{n}^{3}\right)$ exists (in $\mathbb{R}$ ) but is not equal to 0 , we can take $x_{n}=(n+1)^{\frac{1}{3}}$ and $y_{n}=-n^{\frac{1}{3}}$ for all $n \in \mathbb{N}$.)
(b) First method: If possible, let there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(\sin n)=\frac{n \pi}{2}$ for all $n \in \mathbb{N}$. Since $(\sin n)$ is a bounded sequence in $\mathbb{R}$, by Bolzano-Weierstrass theorem, there exist $\alpha \in \mathbb{R}$ and a subsequence $\left(n_{k}\right)$ of $(n)$ such that $\sin n_{k} \rightarrow \alpha$. Since $f$ is continuous at $\alpha$, we get $f\left(\sin n_{k}\right) \rightarrow f(\alpha)$ and so $\frac{n_{k} \pi}{2} \rightarrow f(\alpha)$. This is a contradiction, since $\left(\frac{n_{k} \pi}{2}\right)$, being an unbounded sequence, cannot converge in $\mathbb{R}$. Therefore the given statement is FALSE.

Second method: If possible, let there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(\sin n)=\frac{n \pi}{2}$ for all $n \in \mathbb{N}$. Then $f$ is continuous on $[-1,1]$ and hence $f$ is bounded on $[-1,1]$. Therefore there exists $M>0$ such that $|f(x)| \leq M$ for all $x \in[-1,1]$. Since $|\sin n| \leq 1$ for all $n \in \mathbb{N}$, we get $|f(\sin n)| \leq M$ for all $n \in \mathbb{N}$. This gives $n \leq \frac{2 M}{\pi}$ for all $n \in \mathbb{N}$, which is a contradiction. Therefore the given statement is FALSE.
2. We have $x_{n+1}-x_{n}=\frac{x_{n}^{2}+3}{2 x_{n}}-x_{n}=\frac{3-x_{n}^{2}}{2 x_{n}}$ for all $n \in \mathbb{N}$ and $x_{n+1}-\sqrt{3}=\frac{x_{n}^{2}+3}{2 x_{n}}-\sqrt{3}=\frac{\left(x_{n}-\sqrt{3}\right)^{2}}{2 x_{n}}$ for all $n \in \mathbb{N}$. Now $x_{1}=2>0$ and if we assume that $x_{k}>0$ for some $k \in \mathbb{N}$, then $x_{k+1}=\frac{x_{k}^{2}+3}{2 x_{k}}>0$. Hence by the principle of mathematical induction, $x_{n}>0$ for all $n \in \mathbb{N}$. Therefore from above, we obtain $x_{n} \geq \sqrt{3}$ for all $n \in \mathbb{N}$ (observing that $x_{1} \geq \sqrt{3}$ ) and so $x_{n+1} \leq x_{n}$ for all $n \in \mathbb{N}$. Thus the sequence $\left(x_{n}\right)$ is decreasing and bounded below. Consequently $\left(x_{n}\right)$ is convergent.
3. Let $x_{n}=\frac{n^{2}+2 n}{\left(2 n^{4}+1\right)^{p}}$ and $y_{n}=\frac{1}{n^{4 p-2}}$ for all $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)\left(\frac{1}{2+\frac{1}{n^{4}}}\right)^{p}=\frac{1}{2^{p}} \neq 0$. Since the series $\sum_{n=1}^{\infty} y_{n}$ is convergent iff $4 p-2>1$, i.e. iff $p>\frac{3}{4}$, by the limit comparison test, the series $\sum_{n=1}^{\infty} x_{n}$ is convergent iff $p>\frac{3}{4}$.
4. Let $f(x)=\sin ^{2} \frac{1}{x}+\cos ^{4} \frac{1}{x}$ for all $x \in \mathbb{R} \backslash\{0\}$. If $x_{n}=\frac{1}{n \pi}$ and $y_{n}=\frac{4}{(8 n+1) \pi}$ for all $n \in \mathbb{N}$, then $x_{n} \rightarrow 0$ and $y_{n} \rightarrow 0$. Since $f\left(x_{n}\right)=1$ and $f\left(y_{n}\right)=\frac{3}{4}$ for all $n \in \mathbb{N}$, we get $f\left(x_{n}\right) \rightarrow 1$ and $f\left(y_{n}\right) \rightarrow \frac{3}{4}$. Therefore by the sequential criterion of limit, $\lim _{x \rightarrow 0} f(x)$ does not exist (in $\mathbb{R}$ ).

