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Set Theory

Elementary Concepts
Let A and B be sets. Let Ai , i ∈ I be an indexed family of sets,
i.e. for each i ∈ I we have sets Ai (Assume I 6= ∅)

I Union
A ∪ B , {x |x ∈ A or x ∈ B}⋃

i∈I
Ai , {x |∃j , x ∈ Aj}

I Intersection

A ∩ B , {x |x ∈ A and x ∈ B}⋂
i∈I

Ai , {x |∀j , x ∈ Aj}

I Set Difference (Also written as A− B and called as relative
compliment of B relative to A and shortened as Bc when A is
clear from the context)

A \ B , {x |x ∈ A and x /∈ B}
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Set Theory

Elementary Concepts

I Symmetric Difference

A⊕ B , (A \ B) ∪ (B \ A)

I Power set of a set S (Written as P(S) or 2S)

P(S) , {x |x ⊆ S}

I DeMorgan’s rule.

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc
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Set Theory

Finite and infinite set.

I For any given set A, define A+ called successor of A as below.

A+ , A ∪ {A}

I We can start with the empty set ∅, repeatedly apply the
successor operation and construct a sequence of sets.

I The first few sets in this sequence will be ∅, {∅}, {∅, {∅}},
{∅, {∅}, {∅, {∅}} . . .

I We shall name these sets as 0, 1, 2, 3, . . .
I Let us now define the set N to be the set which

I contains 0.
I Whenever it contains the element A, it contains A+ as well.

I N constructed as above is an “infinite” set but we will
formally define that term in the next page.
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Set Theory

Finite and Infinite Sets

I A set S is said to be finite if there is a bijection (one to one
correspondence) between S and and element of N.

I n is said to be the cardinality or size of the set S and is
denoted by |S |.

I A set S is said to be infinite if it is not finite.

I A set S is said to be countably infinite if there exists a
bijection between S and N.

I A set S is said to be countable or enumerable if it is finite or
countably infinite. (e.g. Z,Q).

I A set is said to be uncountable if it is not countable. (e.g.
R, [0, 1], set of irrationals etc.)

I We say that two sets S1 and S2 are of same cardinality if
there is a bijection from S1 to S2.
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Set Theory

Cardinality of sets

Integers(Z) form a countable set

Consider the map f from Z to N given by f (x) = 2x if x ≥ 0 and
f (x) = 2x − 1 if x < 0.

Rationals form a countable set.
Every positive rational number is of the form p/q, q 6= 0. List the
rationals in increasing order of p + q. ( We can do this because
there are only finitely many positive integral solutions for the
equation p + q = k for any fixed k). Negative rationals can be
similarly enumerated then can combine these enumerations as we
did for integers.

Finite subsets of N is a countable set.
Enumerate in the increasing order of sum of elements in the subset.
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Set Theory

Cardinality of R
Power set of N is of the same cardinality as R

I We need to exhibit a bijection from P(N) to R.

I We shall first exhibit a bijection f from P(N) to [0, 1] and
then a bijection g from [0, 1] to R. (g ◦ f ) will then be a
bijection from P(N) to R.

I Verify that f (S) =
∑
s∈S

2−s is a bijection from P(N) to R

I The diagram below shows a bijection between [0, 1] and R.
The circle in the diagram is the [0,1] interval rolled into a
circle.

x y

g(x) g(y)

−∞ +∞(0, 0)
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Set Theory

Cantor’s theorem

Theorem
Cardinality of N is not the same as the cardinality of R

Proof
(We will show that there are no bijections from N to [0, 1]).

I For contradiction assume that f is a bijection from N to [0, 1].

I Let for n ∈ N, f (n) = 0.an,1an,2an,3 . . . where an,i stands for
the ith digit in the decimal expansion of f (n).

I Consider the number d = d1d2d3 . . . where di = aii + 5

I For each i , f (i) differs from d in the ith digit. Thus d is not
the image of any n ∈ N. Thus f is not a bijection.

I Cardinality of N is written as ℵ0 (read as alpeh not).

I Cardinality of R is written as ℵ1 (read as alpeh one).
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Set Theory

Cantor’s Theorem

Theorem
For every set S , there is not bijection from S to P(S)

Proof

I For contradiction, assume that f is bijection from S to P(S).

I For every s ∈ S , f (s) is a subset of S . f (s) may or may not
contain the element s.

I Collect all the elements d from S such that the image of d
does not contain d and call this set as D.

I Symbolically, D , {d |d /∈ f (d)}
I Notice that D cannot be the image of any element x ∈ S .

I x ∈ D would mean x /∈ f (x) = D.
I x /∈ D would mean x ∈ f (x) = D.
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Logic

Introduction to Propositional Logic

I Propositional Logic is a simple but useful branch of
mathematical logic.

I It helps us make inferences about propositional formulas.

I Propositions are statements which has a truth value.

I A proposition make take either a truth value TRUE or a truth
value FALSE .

I We shall denote a proposition symbolically by letters
P,Q,R . . ..

I Also we shall abbreviate TRUTH and FALSE to T and F
respectively.

I From propositions using connectives, we form more complex
statements.

CS202/MA221



Logic

Propositional Connectives

Below we give a list of commonly used propositional connectives
and their meanings.

Connective Usage Meaning

Negation ¬P Is true if and only if P is false

Conjunction P ∧ Q Is true if and only if both P and Q are true

Disjunction P ∨ Q Is false if and only if both P and Q are false

Implication P ⇒ Q Is false if and only if P is true and Q is false

Equivalence P ⇔ Q Is true if and only if P and Q has same
truth values.

I Implication is also referred to as conditional.

I The meaning of each propositional connective can be
summarized in a truthtable.
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Logic

Truth tables for connectives

P Q ¬P P ∨ Q P ∧ Q P ⇒ Q P ⇔ Q

T T F T T T T

T F F T F F F

F T T T F T F

F F T F F T T

I Total number of possible connectives on two propostional
symbols is 24 = 16.

I Total number of possible connectives on m propostional
symbols is 22m .
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Logic

Propositional Formulas and Structural
Induction

Using propositional connectives and any set of propositional
symbols S we can produce a lot of formulas.
The set of formulas F consists of

I All the elements in S as well as T and F are in F .
I Let ϕ and ψ be elements of F then (¬ϕ), (ϕ ∨ ψ), (ϕ ∧ ψ),

(ϕ⇒ ψ) and(ϕ⇔ ψ) are also elements of F
To prove theorems about set of formulae, we use principle of
structural inductio

Structural Induction
If A ⊆ F satisfies the following conditions then A = F

I A contains all the propositional symbols as well as T and F .

I If α, β ∈ A, then (¬α), (α∨ β), (α∧ β), (α⇒ β) and(α⇔ β)
are also elements of A
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Algebra

Introduction

I Binary operation
A binary operation from a set A to a set B is a function which
assigns for each ordered pair of A a unique element in B.
Mathematically this is written as below

f : A× A 7→ B

I Examples
I Addition: +N : N× N 7→ N
I Addition: +Q : Q×Q 7→ Q

We use the subscripts under the operation to emphasize the
fact that + on N and Q are two different functions.

I Minimum: min:Q×Q 7→ Q
I Multiplication, division, subtraction, exponentiation,

Maximum, Concatenation . . .

CS202/MA221



Algebra

Properties of operations

Let us consider a binary operations

? : A× A 7→ B

I Closure: ? is said to be closed if the set B is equal to A.
I Associativity: Parentheses doesn’t matter.

((a ? b) ? c) = (a ? (b ? c))
I Commutativity: Order doesn’t matter. a ? b = b ? a
I Existence of Identity: A special element e for every a

e ? a = a (left identity)
a ? e = a (right identity)

If the left identity and the right identity both exist, then they
must be the same (Why?) and it is called simply the identity.

I Existence of Inverse An element a−1 associated with each a

a−1 ? a = e (left inverse of a)
a ? a−1 = e (right inverse of a)
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Algebra

Algebraic structures

I A set A equipped with a collection of operators is called an
algebraic structure. We shall assume that the operations are
all binary operations.

Let A = (A, ?) be an algebraic structure.
I If ? is closed and associative then A is a semigroup. e.g., Set

of non empty strings with the concatenation operation
I If ? is closed, associative and has an identity then A is a

monoid. e.g., Set of non strings including the empty string
with the concatenation operation

I If ? is closed, associative, has an identity and has inverse then
A is a group. e.g., n × n invertible matrices under matrix
multiplication

I If ? is closed, associative, has an identity, has inverse and is
commutative then A is an abelian group. e.g., Integers under
addition.
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Algebra

Generators

Let A = (A, ?) be an algebraic structure such that ? is closed. For
B ⊆ A, define a set sequence of sets B0,B1,B2, . . . as below

B0 , B

B1 , {b|b = bi ? bj where bi , bj ∈ B0} ∪ B0

...

Bi+1 , {b|b = bi ? bj where bi , bj ∈ Bi} ∪ Bi

I The set B∗ defined as

B∗ ,
⋃
i∈N

Bi

is called as the set generated by B. Moreover if B∗ = A, the
B is called the generator of A.
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Algebra

Generators

I If ? is an operation such that inverses are well defined then in
addition to elements of the form bi ? bj we add b−1 as well in
the process of “generation”.

Additive chains
An additive chain ending in a n is a sequence a1, a2, . . . , am such
that for every 1 < i ≤ m, ai = aj + ak where j , k < i and am = n.
m is called the length of the chain

Open question

Given an n find the chain of smallest length ending in n.
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Algebra

Subgroup

I Let (A, ?) be a group and let B ⊆ A. B is a subgroup of A if
B is a group.

I Given set B how do we check if it forms a subgroup of A?

I We need to verify closure, associativity, existence identity and
existence of inverse.

I Associativity comes for free.

I Identity of A must be the identity of B. (Why?)

I Inverse of an element in B must exist and be the same as its
inverse in the group A. (Why?)
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Algebra

Subgroup

Subgroup criterion

A subset B of a group (A, ?) is a subgroup if and only if

I B 6= ∅
I For every x , y ∈ B, x ? y−1 ∈ B

Proof

I Since B is non empty there must exist an element x . Since
x ? x−1, the identity of A (therefore the identity B as well)
must be present in B.

I Take x to be the identity of A and y any element of B. Thus
e ? y−1 = y−1 is present in B.

I Let a, b ∈ B. Take x = a and y = b−1. Since (b−1)−1 = b we
can conclude that a ? (b−1)−1 = a ? b ∈ B
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Algebra

Cyclic groups

I A group whose generator is a singleton set is called a cyclic
group.

Lemma
Every finite cyclic group is commutative.

Proof
Let G be a finite cyclic group. Let g be the element in it’s
singleton generator. Therefore G is of the form {g 1, g 2, . . . g r}
where g r = g ? . . . ? g︸ ︷︷ ︸

r times

. The lemma follows from the fact that

g i ? g j = g i+j = g j ? g i
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Algebra

An application of group theory.

The diagram of left shows a solitaire game.
The red circle inside a yellow circle denotes a
position of the board with a marble.

⇒
I An allowed move is shown in the diagram above. A marble

can jump over an adjacent marble (as indicated by the green
arrow in figure).

I While jumping over a marble, one should remove that marble.
Jumping may be done left to right, right to left, top to
bottom and bottom to top.

I The resulting position after the jump in the example is shown
on the right of the ⇒.

I Can one reach a board configuration with a single marble?
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Algebra

Klein four group

I We shall show that it is impossible to reach a configuration
with single coin.

I We will use the Klein four group (K4) for this purpose.

I K4 is defined on {a, b, c , e}. The operation ? is defined as
I a ? a = b ? b = c ? c = e

I K4 is commutative.

I e is the identity.

I a ? b = c , b ? c = a, c ? a = b a

a

a

a

a

a

a

a

a

a

a

a

c

c

c

c

c

c

c

c

c

c

c

cb

b

b

b

b

b

b

b

b

b

b

b

b

I We will mark each yellow circle in the solitaire game described
earlier by an element of K4 as shown in figure above.

I Define value of a configuration to be product of elements at
all the circles with marbles (red dots) in it.
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Algebra

Impossibility proof

I Note that the initial value of the board is a12 ? b12 ? c12

I Each move changes the contents of exactly 3 yellow circles.

I Since any move involves 3 consecutive circles, they must be
labeled using a, b and c .

I The contribution of these circles to the value of the board
before the jump move is one among
{a ? b = c , b ? c = a, c ? a = b}.

I Note that the contribution of these circles to the value of the
board after the jump move is the same as its contribution
before the jump move i.e. Value of the board is invariant
under allowable moves. It will be e.

I No configuration having a single marble on board can have a
board value of e.
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Algebra

Order

I The order of a group G denoted by |G | or ord{G} is the
number of elements in the underlying set.

I The order of a element g of a group G denoted by ord{g} is
the smallest positive number n such that gn is equal to the
identity of G . When is is no such positive integer then we say
that the order is infinite.

I The set {0, 1, . . . , 9} forms a group under modulo 10 addition.
The order of this group is 10. The order of 5 is 1 and the
order of 3 is 10.
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Algebra

Lagrange’s Theorem

Theorem
Let G be a finite group and H be a subgroup of G . |H| divides |G |.
Proof

I Let g ∈ G . The subsets gH and Hg defined as below are the
left and right coset of H w.r.t. g .

gH , {gh|h ∈ H}, Hg , {hg |h ∈ H}
I Every coset of H has size |H|. (if h1 6= h2 then gh1 6= gh2.)

I If g1H ∩ g2H 6= ∅, ∃h1, h2 ∈ H such that g1h1 = g2h2.

I Since H is a group and h1, h2 ∈ H, g1 = g2h2h−1
1 .

I ∴ ∀h ∈ H, g1h = g2h2h−1
1 h = g2h3, for some h3 ∈ H

I ∴ g1H ⊆ g2H. But as all cosets are of size |H|, g1H = g2H

I In other words, there cannot be overlapping cosets unless they
are one and the same.
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Algebra

Lagrange’s Theorem

Proof (Contd.)

I The union of all distinct cosets of H (overlapping cosets
accounted only once) is G as H contains the identity.

I ∴ number of distinct cosets × size of a coset = |G |
I Size of a coset =|H|. Thus we have

|H| =
|G |

number of distinct cosets
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Algebra

Symmetric Group SΩ

I Let Ω be any non empty set. Let SΩ be the set of all one to
one and onto functions (bijections) from Ω to itself. SΩ forms
a group under function composition.

I Suppose Ω = {1, 2, . . . , n} = [n]. Then SΩ is also referred to
as the symmetric group of degree n written as Sn.

I A particular element of Sn can be written as below (n = 8).(
1 2 3 4 5 6 7 8
6 3 2 4 5 1 8 7

)
I The above representation denotes a function σ where
σ(1) = 6, σ(2) = 3, σ(3) = 2, σ(4) = 4, σ(5) = 5,
σ(6) = 1, σ(7) = 8andσ(8) = 7.
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Algebra

Example S3

The elements of S3 are as follows

σ1 =

(
1 2 3
1 2 3

)
σ2 =

(
1 2 3
1 3 2

)
σ3 =

(
1 2 3
2 1 3

)

σ4 =

(
1 2 3
2 3 1

)
σ5 =

(
1 2 3
3 1 2

)
σ6 =

(
1 2 3
3 2 1

)
I Note that σ2(σ3(1)) = 3, σ2(σ3(2)) = 1 & σ2(σ3(3)) = 2

I If we denote the group operation by ◦, σ2 ◦ σ3 = σ5

I As σ3 ◦ σ2 = σ4, We know that S3 is not an Abelian group.
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Algebra

Cycle Representation

I Instead of writing an element of Sn in two rows, we may
represent it using cycles.

I Consider the permutation σ given below

σ =

(
1 2 3 4 5 6 7 8 9
6 3 5 4 2 1 8 7 9

)
I σ(1) = 6, σ(6) = 1. (This completes a cycle)
I Further, σ(2) = 3, σ(3) = 5, σ(5) = 2
I Continuing this way, σ can be broken down into cycles and

written as follows (1, 6), (2, 3, 5), (4), (7, 8)(9)
I Each (a1, a2, . . . , ak) denotes a cycle such that σ(ai ) = ai+1

for all i except k. and σ(ak) = a1.
I We will remove the cycles of length 1, for example in σ given

above we shall remove the cycles (4) and (9)
I The representation obtained is called the cycle representation.
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Algebra

Cycle Representation (Algorithm)

1. From [n] pick the smallest element a which has not yet
appeared in any cycle.

2. Add a as the starting element of a new cycle.

3. Compute the value σ(x) where x the most recently added
element of the cycle and repeat this till the cycle closes.
Return to step 1 after cycle closes.

4. Remove cycles of length 1.

Remark: Let n be a permutation of [n]. ord(n) will be equal to
the l.c.m of the length of cycles in the cycles representation of σ.
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Algebra

Equivalence Relation and Partitions

I Given a set S , A partition of S is set of disjoint subsets of S
such that their union is S .

S1

S2

S3 S4

I In Figure above, the set S is shown partitioned into 4 parts.
I An equivalence relation R is a binary relation defined on a set

S such that S is
I reflexive: aRa for all a ∈ S .
I symmetric: If aRb then bRa.
I transitive: If aRb and bRc then aRc .

I Partitions and Equivalence relations are one and the same
thing.
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Algebra

Equivalence Relations and Partitions

I Given a partition P of S define a relation R such that aRb if
and only if a and b belong to the same disjoint subset in the
partition P. Verify that this relation R is indeed an
equivalence relation.

I Conversely, given an equivalence relation R on a set S , we can
define a partition in the following way.

I For each element a define Ra to be the set of all elements b
such that aRb. Ra is called the equivalence class of a.

I Note that every element is in some equivalence class.
I Also if two equivalence classes Ra and Rb have an overlap,

then one can easily show that Ra = Rb as R is an equivalence
relation.

I The set of all equivalence classes of elements in S thus forms a
partition of S .
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Algebra

Homomorphism and Isomorphism

I Let (G , ?) and (H, ◦). be groups. Any function f from G to
H such that for all g1, g2 ∈ G , f (g1 ? g2) = f (g1) ◦ f (g2) is
called a homomorphism.

I For each h ∈ H, all the elements of G mapping to h forms the
fiber of f over h.

I For example, the map x 7→ ex is a homomorphism from
(R,+) to (R+,×) because ex+y = exey . (R+ denotes the set
of positive reals.)

I If f is a bijection then the homomorphism becomes an
isomorphism.

I f maps the identity of G to the identity of H.
(f (e) ◦ f (e) = f (e ? e) = f (e). Cancel (f (e) from both sides.)

I Image of the inverse equals the inverse of the image, i.e.
f (x−1) = f (x)−1. (As f (x) ◦ f (x−1) = f (x ? x−1) = f (e))

I Kernel of f is the set of all a such that f (a) = identity of H.
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Algebra

More on Homomorphisms

Theorem
Kernel of f denoted by Ker(f ) is a subgroup of G and image of G
under f is a subgroup of H.

Proof
For any x , y ∈ G and a homomorphism f ,we have
f (xy−1) = f (x)f (y−1) = f (x)f (y)−1. Let e1 be the identity in G
and e2 the identity in H
Consider x , y ∈ Ker . Thus f (x) = f (y) = f (y)−1 = e1.
∴ f (xy−1) = f (x)f (y)−1 = e. Thus Ker(f ) is a group.
Consider x , y ∈ Image of G Thus ∃x ′, y ′inG such that f (x ′) = x
and f (y ′) = y . Note that f (x ′y ′−1 = xy−1 Thus xy−1 ∈ Image of
G . Thus image of G is a group.
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Algebra

Quotient Group

I Let f be a homomorphism with K as its kernel. The quotient
group G/K (read as G mod K ) is the group consisting of
fibers of f .

I Suppose G1 is the fiber above f (g1) and G2 the fiber above
f (g2), then the product in G/K is computed by defining G1G2

to be the fiber above f (g1g2). (Verify that this definition is
well defined as f is homomorphism)

I GLn(R) be the group of all invertible n× n matrices. Consider
the map from GLn(R) to R \ {0} given by f : A 7→ det(A)
where det(A) denotes the determinant of A.

I Ker(f ) is all n × n matrices with determinant one. Fibers are
all matrices with determinant c , c ∈ R \ {0}
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Combinatorics

Pigeon Hole Principle

Let 10 points be randomly chosen from an equi-
lateral triangle of side 3. Show that there will
be two point within distance 1 cm of each other.

I Observe that there must be at least one small triangle which
contains 2 points.

I These points must be within 1 cm of each other.

Pigeon Hole Principle

Suppose there are n objects to be distributed into n − 1 boxes,
then there exists a box with contains more than one object.

Generalized Pigeon Hole Principle

Suppose there are q1 + q2 + . . .+ qn − n + 1 objects to be
distributed into n boxes,then there exists an i such that the ith
box contain at least qi objects in it.
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Combinatorics

Applications of PHP

I In every set of people (with more than two people) there
exists two persons with same number of friends.

Proof

I Let the set have n people.
I If there is a person with no friends there cannot be a person

who friends with everyone.
I If there is a person who is friends with everyone there cannot

be a person without friends.
I Thus the number of friends each person can have is either

from the set {0, 1, . . . , n − 2} or from the set {1, . . . , n − 1}.
In either case the number of distinct elements in the set is
n − 1. Therefore one element must repeat.
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Combinatorics

Applications of PHP

Erdös Szekeres Theorem
Every sequence of length n2 + 1 contains a monotone subsequence
of length n + 1.

Proof

I Let a1, a2, . . . an2+1 be the series we are considering.

I Let mi denote the length of the maximal increasing sequence
starting from the element ai

I If any mi is greater than n we have a monotone subsequence
of length n + 1. So let us assume that every mi is less than or
equal to n.

I Since there are n2 + 1 different mi , taking values 1 to n, there
must exist an L such that n + 1 of the mi s takes the value L.
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Combinatorics

Erdös Szekeres Theorem (Proof)

I Consider the ai s with mi = L.

I Let us write these elements as b1, b2, . . . , bk (Note that
k ≥ n + 1). without changing the order in which they appear
in the original sequence.

I If bs < bs+1 for any s, then consider the maximal monotonic
increasing sequence starting at bs+1 (which is of length L).
We can append bs to the start of this sequence to get an
increasing monotonic sequence of length L + 1 starting at bs .

I This contradicts the assumption that the maximal increasing
monotonic sequence starting at bs is of length L.

I Thus we have bs ≥ bs+1 for all s.

I Considering bi s , we have obtained a monotonic decreasing
sequence of length at least n + 1
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Combinatorics

Principle of Mathematical Induction

Weak Induction
Let P(n) be statement about a natural number n such that

I Base: P(1) is true.

I Induction: P(n + 1) true whenever P(n) is true

Then P(n) is true for all n ∈ N

Strong Induction

Let P(n) be statement about a natural number n such that

I Base: P(1) is true.

I Induction: P(n + 1) true whenever P(m) is true for m ≤ n

Then P(n) is true for all n ∈ N
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Combinatorics

Incorrect use of PMI

(Pseudo)Theorem: All horses are of the same color.

(Pseudo) Proof:

P(n) , Any set of containing n horses have horses of identical color.

I Base case: For n = 1 the statement P(n) is certainly true.

I Induction case: Assume that P(k) is true for some k . Now
consider a set of k + 1 horses.

I The horses numbered 1 to k forms a set of k horses. They are
all of the same color say c. In particular the horse numbered k
is of color c .

I The horses numbered 2 to k + 1 forms a set of k horses. They
are all of the same color as the horse numbered k i.e. c . Thus
all the horses are of the same color.

Question: Where is the mistake in the above “proof”?
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Combinatorics

Well Ordering Principle

Every non empty subset of N has a smallest element.

I Well ordering principle is equivalent to PMI.
I We shall first prove that PMI ⇒ WOP using strong induction.

P(n) , Every subset of N containing n has a least element

I Base:1 is certainly the least element of any subset of N
containing 1. Thus P(1) is true.

I Induction: Consider any set S containing k + 1.
I If S contains any element, say m, smaller than k + 1, then by

strong induction,as P(m) is true, we know that S contains a
least element.

I If S didn’t contain any element smaller than k + 1, then S
contains a smallest element, namely k + 1. Thus P(k + 1) is
true.
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Combinatorics

Well Ordering Principle

I We shall now show the reverse direction namely WOP ⇒ PMI.
I For contradiction, let us assume that there is a property P

such that
I P(1) is true and whenever P(k) is true, P(k + 1) is also true.
I There exists a number m such that P(m) is false.

I Let S , {x ∈ N|P(x) is false}.
I Since m ∈ S , S is a non empty subset of N and thus has a

least element say s.

I s 6= 1 because P(1) is true. Since s is the least element of S,
s − 1 /∈ S .

I ∴ P(s − 1) is true. But then P((s − 1) + 1) must also be true
and thus s /∈ S .
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Graph Theory

Topics

I Introduction Definitions

I Eulerian Cycles

I Hamiltonian Cycles

I Tournament Graphs

I Minimal Spanning Trees
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