- 1. Show that if G is an abelian group then for all $a, b \in G$ and for all $n \in \mathbb{N}$, $(ab)^n = a^n b^n$.
- 2. Show that if G is a group such that for all $a, b \in G$ $(ab)^2 = a^2b^2$, then G is abelian.
- 3. Let $S = \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\}$. Is S is a group under usual multiplication? What is the smallest group containing S?
- 4. Let $n\mathbb{Z}, n \in \mathbb{N}$ denote the set of all multiples (both positive and negative) of n.
 - 1. Show that $n\mathbb{Z}$ a group under addition.
 - 2. Consider the groups $3\mathbb{Z}$ and $5\mathbb{Z}$. Let $h: 3\mathbb{Z} \mapsto 5\mathbb{Z}$ be a such that h(15) = 45 Can h be a homomorphism?
- 5. Let G be a finite group with order p where p is a prime number. Show that G is cyclic.
- 6. Let G be a finite abelian group and let $a, b \in G$. ord(a) = 3 and ord(b) = 5. What is ord(ab)?
- 7. Show that for all $a \in G$ where G is a group, $ord(a) = ord(a^{-1})$.
- 8. Which of the following are groups?
 - 1. $G = \{a + b\sqrt{2}\}, a, b \in \mathbb{Z}$ under addition.
 - 2. $G = \{a + b\sqrt{2}\} \setminus \{0\}, a, b \in \mathbb{Z}$ under multiplication.
 - 3. $G = \{a + b\sqrt{2}\}, a, b \in \mathbb{Q}$ under addition.
 - 4. $G = \{a + b\sqrt{2}\} \setminus \{0\}, a, b \in \mathbb{Q}$ under multiplication.
- 9. Let G be a group of order 10. Let $a, b \in G$ such that order of a and b are 2 and 5 respectively. Describe all the elements of G.
- 10. Show that there cannot be an isomorphism from the additive group \mathbb{Z} to the additive group \mathbb{Q} .
- 11. Show that matrices $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ form a group under matrix multiplication. Is this a proper subgroup of 2×2 invertible matrices?