1. Show that if G is an abelian group then for all $a, b \in G$ and for all $n \in \mathbb{N},(a b)^{n}=a^{n} b^{n}$.
2. Show that if G is a group such that for all $a, b \in G(a b)^{2}=a^{2} b^{2}$, then G is abelian.
3. Let $S=\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\}$. Is S is a group under usual multiplication? What is the smallest group containing S ?
4. Let $n \mathbb{Z}, n \in \mathbb{N}$ denote the set of all multiples(both positive and negative) of n.
5. Show that $n \mathbb{Z}$ a group under addition.
6. Consider the groups $3 \mathbb{Z}$ and $5 \mathbb{Z}$. Let $h: 3 \mathbb{Z} \mapsto 5 \mathbb{Z}$ be a such that $h(15)=45$ Can h be a homomorphism?
7. Let G be a finite group with order p where p is a prime number. Show that G is cyclic.
8. Let G be a finite abelian group and let $a, b \in G . \operatorname{ord}(a)=3$ and $\operatorname{ord}(b)=5$. What is $\operatorname{ord}(a b)$?
9. Show that for all $a \in G$ where G is a group, $\operatorname{ord}(a)=\operatorname{ord}\left(a^{-1}\right)$.
10. Which of the following are groups?
11. $G=\{a+b \sqrt{(2)}\}, a, b \in \mathbb{Z}$ under addition.
12. $G=\{a+b \sqrt{(} 2)\} \backslash\{0\}, a, b \in \mathbb{Z}$ under multiplication.
13. $G=\{a+b \sqrt{(2)}\}, a, b \in \mathbb{Q}$ under addition.
14. $G=\{a+b \sqrt{(} 2)\} \backslash\{0\}, a, b \in \mathbb{Q}$ under multiplication.
15. Let G be a group of order 10 . Let $a, b \in G$ such that order of a and b are 2 and 5 respectively. Describe all the elements of G.
16. Show that there cannot be an isomorphism from the additive group \mathbb{Z} to the additive group \mathbb{Q}.
17. Show that matrices $\left(\begin{array}{cc}\cos \theta & \begin{array}{c}\sin \theta \\ -\sin \theta \\ \cos \theta\end{array}\end{array}\right)$ form a group under matrix multiplication. Is this a proper subgroup of 2×2 invertible matrices?
