1. Consider numbers of the form $10^{n}-1$. Which of the following statements are true?
(i) No number in this sequence is divisible by 7 .
(ii) No number in this sequence is divisible by 71 .
(iii) No number in this sequence is divisible by 77 .
(iv) No number is this sequence is divisible by 18 .
2. Consider a class of n students. Every day after the lecture chocolates were given to students who answered the questions posed in class. Let c_{i} and m_{i} be respectively the number of chocolates and marks that student i received during the course. No student got more that 13 chocolates. It was observed that each student had a distinct $\left(c_{i}, m_{i}\right)$ pair. What is the maximum value of n. (Assume that maximum marks awarded was 98 , minimum was 10 and that all marks were integers).
3. Show that any set of 7 integers will have two integers in them whose sum or difference is divisible by 10 . Also construct a set of six integers for which this is not true.
4. Consider particles moving in a closed box of dimension $2 m \times 5 m \times 10 m$. It was observed that no two particles got within a distance of $\sqrt{3} \mathrm{~m}$. Show that there can be no more than 101 particles in the box.
5. Show using PMI that every natural number can be uniquely represented as a sum of numbers of the form $2^{i}, i \in \mathbb{N}$. Is this true for numbers of the form $2^{i}-1$? Where does the proof go wrong?
6. Count the number of even sized subsets for a set of size n.
7. Let $k=a_{1} a_{2} \ldots a_{n}$ be an n digit number with its digits being $a_{1}, a_{2}, \ldots a_{n}$ and $a_{1} \neq 0$. By "rotation" of an n-digit positive integer $k=a_{1} a_{2}$ where a_{i} is the i th digit, we mean the cyclic shifts of its digits. Count the number of n digit positive integers such that all the rotations result in n digit numbers.
8. Count the number 6 digit numbers that contains 7 and are divisible by 10 .
9. Show that $2^{n-i} \times n \times(n-1) \times(n-2) \ldots(n-i+1)=\sum_{k=i}^{n} k \times(k-1) \times(k-2) \ldots(k-i+1) \times\binom{ n}{k}$
10. How many n digit numbers contain at least one even number and one odd number?
