
BT 210 Biochemistry Lab

Estimation of carbohydrate by the Anthrone method

Theory/Principle: Carbohydrates are dehydrated by $conc.H_2SO_4$ to form furfural. Active form of the reagent is anthranol, the enol tautomer of anthrone, which reacts by condensing with the carbohydrate furfural derivative to give a green colour in dilute and a blue colour in concentrated solutions, which is determined colorimetrically. The blue - green solution shows absorption maximum at 620 nm.

Reaction:

(i) Hydrolysis to monosaccharides

- _____
 - (i) Equipments:
- UV Spectrophotometer
- Vortex mixer
- Mantle heater
- (ii) Chemicals/Reagents:
 - Anthrone Reagent
 - Glucose
 - Other carbohydrates if desired
- (iii) Glass wares and others:
 - Test tube, Test tube stand, Pipettes,Beaker,Ice Test tube caps or marbles, Tissue paper, Wash bottle.

(b) <u>Reagents</u>:

- (i) Anthrone reagent: Dissolve 2g of Anthrone in 1 litre of concentrated H₂SO₄. Use freshly prepared reagent for the assay
- (ii) Glucose stock solution: 200µg glucose per mL distilled water.

Note: Can include other carbohydrates of the same concentration if desired.

(c) Procedure:

 Pipette out into a series of test tubes different volumes of glucose solution (follow up **Table 1**) from the supplied stock solution(200µg /ml) and make up the volume to 1 mL

with distilled water.

- 2. Consider tube 1 as blank and tubes 2 through 9 for construction of a standard curve. Tubes 10-11 are for the unknown samples.
- 3. To each tube add 5 mL of the anthrone reagent (supplied) and mix well by vortexing.
- 4. Cool the tubes.
- Cover the tubes with marbles on top and incubate at 90° C for 17 minutes or boiling water bath for 10 minutes.
- 6. Cool to room temperature and measure the optical density at 620 nm against a blank.
- 7. Prepare a standard curve of absorbance vs. µg glucose.

Table 1

S1.	Glucose		DH ₂ O	Anthrone	A ₆₂₀
No.			(μL)	reagent	
	(μL)	(µg)		(mL)	
1.	-	-	1000	5	
2.	50	10	950	5	
3.	100	20	900	5	
4.	200	40	800	5	
5.	300	60	700	5	
6.	400	80	600	5	
7.	500	100	500	5	
8.	750	150	250	5	
9.	1000	200	-	5	
10.	Unknown (A)	-	-	5	
11.	Unknown (B)	-	-	5	

(iv) **Calculation:** Determine the slope (y/x) from the standard curve, which will give the A₆₂₀ per unit of glucose (µg). Hence, determine the amount of glucose in the unknown sample.

References:

- 1. E.E.Layne, (1975) Methods in Enzymology, 3:447
- 2. David T. Plummer (1990) An Introduction to Practical Biochemistry,179 Third Edition