In silico predictions of 3D structures and binding sites for GPCR-ligand complexes

William A. Goddard, III
Materials and Process Simulation Center (MSC)
California Institute of Technology, Pasadena, CA 91125, USA
2015 IISc-DST Centenary Chair Professor, Indian Institute of Science, Bangalore India

G Protein Coupled Receptors (GPCRs) play a critical role in cell communications (dopamine, histamine, epinephrine, and serotonin) and in sensing the outside world (vision, smell, taste, and pain). Consequently they are potential targets for a large number of diseases. However multiple GPCRs may be affected by the same ligand (there are 14 human serotonin receptors) leading often to therapeutics with low selectivity and toxic side effects. Development of highly selective ligands has been hampered by a lack of x-ray crystal structures for most GPCRs.

We will first describe the recent progress in developing methods for predicting the 3D Structure of G Protein Coupled Receptors (GPCRs) and the binding sites for various agonists and antagonists then we will discuss the application of these methods to such systems as: CB1 cannabinoid receptor (target for obesity), CCR5 cytokine receptor (target for HIV inhibition), DP Prostaglandin receptors, GLP1 receptor (target for diabetes), TAS2R38 bitter taste receptor (target for GLP1 control in GI track).

References:

1. SuperBiHelix method for predicting the pleiotropic ensemble of G-protein coupled receptor conformations; Bray JK; Abrol R; Goddard WA; Trzaskowski B & Scott CE; Proc. Nat. Acad. Sci. USA, 111 (1): E72-E78 (2014) wag1014
2. Bihelix: Towards de novo structure prediction of an ensemble of G-protein coupled receptor conformations; Abrol R; Bray JK; Goddard WA; Proteins-Structure Function and Bioinformatics, 80 (2): 505-518 (2012) wag965
5. Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding; Ahn KH; Scott CE; Abrol R; Goddard WA & Kendall DA; Proteins-Structure Function and Bioinformatics, 81 (8): 1304-1317 (2013) wag1039
7. Molecular basis for dramatic changes in cannabinoid CB1 G protein-coupled receptor activation upon single and double point mutations; Scott CE; Abrol R; Ahn KH; Kendall DA & Goddard WA; Protein Science, 22 (1): 101-113 (2013) wag1007
8. The Predicted Ensemble of Low-Energy Conformations of Human Somatostatin Receptor Subtype 5 and the Binding of Antagonists; Dong SS; Abrol R & Goddard WA; ChemMedChem, 10 (4): 650-661 (2015) wag1111

[For pdf files, see http://www.wag.caltech.edu/publications/papers/]