
A Two-Kernel based Strategy for Performing
Assembly in FEA on the Graphic Processing Unit

Subhajit Sanfui and Deepak Sharma
Department of Mechanical Engineering
Indian Institute of Technology Guwahati

Assam, India, Pin-781039
Email: {s.sanfui, dsharma}@iitg.ernet.in

Abstract—This paper presents a strategy to perform assembly
of system of equations arising in Finite Element Analysis (FEA)
on Graphics Processing Units (GPU) based on the principle
of dividing the workload into separate kernels. Three different
sparse formats are analyzed for efficient storage along with
two different implementations for the race condition arising in
the traditional assembly (addto method). In the present study,
ELL sparse storage format is found to be effective in terms of
both storage space and performance on the GPU. To avoid race
condition, the method of coloring is found to provide superior
result in comparison to the method with atomics for the proposed
assembly strategy.
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I. INTRODUCTION

Finite Element Method (FEM) is a numerical method for
approximating solutions of boundary value problems for par-
tial differential equations (PDEs). It has been used in many
fields such as mechanical engineering, electrical engineering,
medical applications to name a few, where a solution to PDEs
is sought. Due to its natural benefits over prior approaches, it
has become an integral part of a large variety of specializations
related to mechanical engineering. In industries like aviation,
automotive and construction, FEM is usually an inherent part
of the computer aided design and engineering (CAD/CAE)
process [1]. The process of applying concepts of FEM for
the analysis of physical systems is often referred to as “Finite
Element Analysis (FEA)”. A typical FEA consists of three
basic steps.

1) Pre-processor Step - In this step, the problem domain
is defined by specifying the material properties, type of
element, nodal coordinates and connectivity.

2) Solver Step - This step assembles algebraic equations
for each element in matrix form and computes the values
of the primary unknowns after application of proper
boundary conditions.

3) Post-processor Step - In this step, the values of the
primary unknowns are used to extract several useful
information about the problem domain, for example
stresses, strains etc. Plotting of relevant data is also
performed at this stage.

It has been observed that among all these steps in FEA,
generation of elemental stiffness data, assembly and solution

of the resulting matrix in the solver stage are often computa-
tionally expensive in nature, [2], [3], [4] making it a suitable
candidate for GPU implementation. However, the sparsity
pattern in the global matrices after assembly is often highly
irregular, making it quite difficult for an efficient parallel
implementation. It has been demonstrated that in order to
efficiently port FEA on the GPU, an implementation, radically
different to that on the CPU is required [5]. Computation of
elemental stiffness matrix for higher order elements [6] or
for unstructured grid become especially time-consuming due
to the repetitive calculation over all the elements. Assembly
of the elemental matrices in many practical applications be-
come particularly time-consuming due to a large mesh size.
Typically in the literature, applications performing FEA on
the GPU, tend to implement matrix-free methods, obviating
the need to assemble or store the complete global matrices
[7], [8]. The key principle in the matrix-free approach is
that instead of performing sparse matrix-vector multiplication
(SpMV) after assembling the global data, SpMV may be
applied to the elemental matrices and the results may be
assembled afterwards. In [6], numerical simulation of seismic
wave propagation, resulting from earthquakes is implemented
on an NVIDIA GPU. To avoid the race condition during
assembly in FEA, the elements are colored such that no
neighboring elements share the same color. Following this,
assembly is performed for each color in a sequential manner.
In [3], several strategies are proposed to perform assembly on
an unstructured grid in two dimensions by decomposing the
task into independent blocks of work. Assembly is performed
by calling a subroutine that computes the elemental data for
each element of the mesh. Each thread is assigned to perform a
different task for different strategies. Race condition is avoided
by assigning each thread to one NZ entry or implementing a
coloring scheme similar to the one used in [6]. Authors found
the coloring approach to be inefficient due to excessive global
memory transactions. In [5], assembly is discussed through
two different approaches, namely the local matrix approach
(LMA), and the addto method. The addto method is the
traditional assembly method, whereas, LMA is a matrix free
method designed to alleviate difficulties in implementing addto
on the GPU architecture. The authors concluded that LMA
and addto can be efficient for GPU and CPU implementations
respectively. In [9], an efficient technique for generation of



global system of equations is presented for application in the
field of computational electromagnetics. The authors proposed
a strategy to first assemble the stiffness matrix into coordinate
format (COO) and later convert it into compressed sparse row
(CSR) format for further processing.

The solution of the linear system of equations may be
performed by direct and iterative methods. Typically in case
of matrices of large dimensions, iterative methods such as
Conjugate Gradient Methods are preferred [3]. In the present
work, we concentrate our focus on structured grids with low
order elements, where the assembly and solution of the system
of equations are performed on the GPU.

The contributions of this paper are summarized as
• Proposing a strategy to divide the assembly task into

different kernels for efficient implementation on the GPU.
• Customization of the proposed strategy in context of three

different sparse storage formats.
• Proposing a new approach of implementing coloring

with the proposed assembly method to avoid the race
condition and its comparison with a low-wait algorithm
with atomics.

In section II, a brief overview of the graphics processing
units is presented. Section III outlines the formulation of
FEM for a linear elasticity problem. In section IV and V, the
assembly and solution of the system of equations are discussed
respectively. Results are discussed in section VI and finally the
paper is concluded in section VII.

II. GPU ARCHITECTURE & CUDA
Graphics Processing Units are specialized circuits which,

although primarily designed for rendering graphics, have been
largely implemented for accelerating computation arising in
various research, scientific, analytical and other applications.
A number of platforms such as OpenCL, OpenMP and CUDA
are derived over the past several years for parallelizing gen-
eral purpose applications. For the present implementation,
CUDA, a parallel computing platform and API developed by
NVIDIA, has been used. CUDA provides the architecture and
programming model that accommodates both the host (CPU)
and device (GPU) simultaneously. The device code is written
using particular extensions to the C programming syntax,
inside special functions termed as Kernels. These Kernels may
generate grids of thousands or even millions of threads to
parallelize a given task instead of running in a sequential
manner on the CPU. A schematic representation of the data
flow in a hybrid computing environment is presented in figure
1 For details of the architectural model and programming
syntax, interested readers may refer to [10]. The contributions
of this paper is in line with the trend that utilizes GPUs
to accelerate general purpose applications. Examples include
solution of PDE [11], [12], [13], Image Processing [14],
[15], Molecular Dynamics [16], [17], Weather simulation [18],
[19], Modeling and simulation of complex phenomenon [20],
[21] and more. Following is the glossary of terms for GPU
architecture and CUDA.

• Host is the CPU.

Memory
GPU

Processing 

parallel
data in

Memory
CPU CPU

GPU

Send 
Instructions

Input Data
Output Data

Fig. 1. Schematics of data processing on the GPU

• Device is the GPU.
• Kernel is a function executed on GPU.
• Thread is a unit of computation.
• Block is a collection of threads.
• Grid is a collection of blocks.
• The code is actually executed in groups of 32 threads,

which is called a warp.
• Global Memory is memory that all threads can access

at any time.
• Shared Memory is on-chip memory that all threads in a

block can access.

III. FEM FORMULATION FOR LINEAR ELASTICITY
PROBLEM

The response of a mechanical system to certain loading
conditions is governed by partial differential equations which
may be derived from the basic laws of physics. However
solving these equations analytically often pose a great chal-
lenge due to complexity and size of the domain, non-linear
behavior etc. By the use of FEA, the complex and large
domain is broken up into smaller and simpler elements called
finite elements as shown in figure 2 and certain functions
are used to approximate the behavior of these elements.
Algebraic equations governing the response of these elements
are assembled in matrix form to approximate the behavior of
the entire domain. In this section the formulation for FEM of
a linear Elasticity problem for a three dimensional system is
presented.

A. Linear Elasticity

Linear elasticity is the study of deformation and stresses
in solid bodies subjected to certain loading conditions. The
governing equations of a linear elasticity boundary value prob-
lem constitute of three equilibrium equations from Newton’s
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Fig. 2. Typical Finite Element Mesh

second law of motion, six strain-displacement relations and
six constitutive equations, which are given as [1],

σij,j + bi = ρüi, i, j = 1, 2, 3, (1)

ϵij =
1

2
(uj,i + ui,j), (2)

σij = Cijklϵkl. (3)

Here, bi are the body forces per unit volume, ρ is the mass
density, ui are the displacements, σij are the stresses, ϵij are
the strains and Cijkl, the Cauchy stress tensor.

Equation (1) may be subjected to the essential and natural
boundary condition as,

ui = ūi on Γu ti = t̄i on Γ, (4)

where, ti are the boundary traction forces on boundary Γ.
Γu is the portion of the boundary Γ, where the displacements
are specified.

B. Formulation

The basic idea behind linear finite element formulation is
to linearize the weak form of the governing equations of the
problem and to solve these equations over the discretized
domain [1].

The displacements of one element of the mesh can be
approximated as,

{u}e ≈ [N ]e ˜{u}
e
, (5)

where, [N ]e are the shape functions used for approximation.
To construct a weak form of the governing equation, we can
multiply equation (1) with virtual displacement δui and inte-
grate over the domain Ω. Gauss Divergence theorem may be
applied to the resulting equation calculated over all elements
of a discretized domain and simplified to get,

ne∑
e=1

[[M ]e{ü}e + [K](e){ũ}e − {f}eext] = 0, (6)

where, [M ]e, [K]e and {f}eext are the elemental mass matrix,
stiffness matrix and external force vector. Since, for a static
problem, the first term in equation (6) is considered zero. Inter-
ested readers may refer to [1] for a more detailed formulation.
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Fig. 3. Discretization and global numbering scheme

C. Assembly

For carrying out finite element analysis, we discretize
3D problem domain into a structured grid by using cubic
hexahedron elements as shown in figure 3. The global node
numbering scheme adopted in this work, is also shown in
figure 3.

The eight shape functions are given by,

[Ni]
e =

1

8
(1 + ξξi)(1 + ηηi)(1 + ζζi), (7)

where, ξi, ηi and ζi denote coordinates of the ith node. The
elemental stiffness matrix is given as [1]

[K]e =

∫
V

[B]T [D][B] dxdydz

=

∫ +1

−1

∫ +1

−1

∫ +1

−1

B(ξ, η, ζ)TDB(ξ, η, ζ) | J(ξ, η, ζ) |

dξdηdζ

=
20∑
i=1

20∑
j=1

20∑
k=1

wξiwηjwζkB(ξi, ηj , ζk)
TDB(ξi, ηj , ζk)

| J(ξi, ηj , ζk) |
(8)

Here, B is the matrix that contains partial derivatives of the
shape functions with respect to x, y and z. J and D are the
Jacobian and constitutive matrix respectively. wξi , wηj and
wζk are the weights for carrying out numerical integration
using Gauss Quadrature(GQ) method. In this case, a 20 point
GQ method is used.

For a cubic hexahedron element, the size of [K]e matrix is
24 × 24. Upon assembling all [K]e, the global stiffness [K]
matrix is constructed. In the following section, assembly is
discussed in detail.

IV. ASSEMBLY ON GPU

A. Assembly

The process of assembly is essentially an additive opera-
tion, where the elemental matrix is computed as explained
in equation (8) and based on its position on the problem
domain, the matrix is added to the global stiffness matrix [K].
Assembly is typically carried out in an element-by-element
fashion, where, for each element of the mesh, the target indices



of the global stiffness matrix are computed and the elemental
matrix is added to the values at the corresponding indices. For
a structured grid, since the elemental stiffness matrix is same
for all the elements, it may be computed only once. Because
of the highly sparse nature of the global stiffness matrix, it is
typically stored using specialized sparse formats such as COO
and CSR [5], [9].

For implementation of FEA on GPU, two different strategies
of assembly have been used in the literature, namely LMA and
addto. In [5], LMA is concluded to perform better for GPU
implementations and addto method for CPU implementations.
Although, the addto method is massively data-parallel because
all the iterations of the outer loop can be executed indepen-
dently, it is found to be inefficient on the GPU. Due to the
possibility of parallel threads writing to the same memory lo-
cation, expensive coloring or atomics has to be implemented to
avoid race condition. Another issue that hampers performance
of the addto method is the bisection search for locating the key
from the global stiffness matrix in sparse format. This leads to
massive amount of uncoalesced accesses and thread divergence
within warps leading to decreased performance. LMA is
considered to be an effective data-parallel alternative because it
reduces the storage requirements of the global stiffness matrix
while taking care of race condition. The downside of using
LMA instead of addto method is that it increases computation
and memory bandwidth of the application proportional to the
variance of the mesh [5]. In the present work, a modified addto
method is implemented that takes care of the race condition
and costly bisection search by dividing the operation into two
different kernels to achieve performance.

Instead of the traditional assembly approach, where the
indices and values of the sparse global matrix are computed
and stored at the same time, a different approach is followed by
dividing the workload into two kernels on the GPU. The first
kernel is responsible for computing the indices only. Since this
computation is based only on the geometry of the domain, this
kernel consumes only a fraction of the total computation time
as discussed later in the results section. After the indices are
computed and stored onto the global memory, a second kernel
is invoked that computes the non-zero (NZ) values based on
the corresponding indices. The key idea behind this approach
to assembly is that for a structured mesh, computation of NZ
indices of the global stiffness may be performed based on the
connectivity information alone, and hence can be performed
separately from the actual assembly operation. This reduces
the complexity of the bisection search drastically. Instead of
the entire length of the arrays, bisection search is applied to a
reduced target zone (of length varying from 24 to 81), thereby
reducing the computation time significantly. Two efficient
strategies are discussed later for avoiding the race condition
inherent in the addto method.

To perform assembly on the GPU, the following data is
required.

1) The elemental stiffness matrix ([K]e).
2) Connectivity/Domain matrix containing the global node

numbers (connectivity/domain).

3) Matrix containing the NZ indices corresponding to all
nodes (NZIndex).

Each thread block has access only to the data corresponding
to the elements and nodes assigned to it.

To make use of one of the sparse formats for storing the
global stiffness matrix, the exact number of non-zero elements
must be known beforehand. Although this requirement is not
stringent in case of traditional assembly on CPU, it becomes
necessary for allocating memory to the device pointers and to
determine the configuration parameter of the kernels. Hence,
an expression is derived analytically from the geometry of
the problem domain to provide the exact number of NZ
in the global stiffness matrix for a three dimensional struc-
tured mesh containing cubic hexahedron elements of equal
size. This expression is derived by subtracting the number
of repeated write operations from the total write operations
during assembly calculated from the connectivity information
of the domain. Similar expressions may be derived for other
geometries with the same principle for calculating the number
of NZ beforehand. If x, y and z be the number of nodes in the
x, y and z directions respectively, the number of NZ is found
to be given by

NZ = 108(x+y+z)−162(xy+yz+zx)+243xyz−72 (9)

At the beginning of the application, memory allocation and
initialization of the required arrays based on the number of NZ
calculated from (9) is performed. Following this, the assembly
task is divided into two separate kernels.

1) Kernel 1: This kernel is responsible for computing
the row and column indices of the NZ entries but not the
values. Each node in the problem domain corresponds to
three rows and three columns of the global stiffness matrix.
One thread is assigned to each of the nodes of the mesh.
The idea behind this kernel is that the number of NZ in a
particular row can be calculated by multiplying the degrees of
freedom per node with the number of neighboring nodes of
the node corresponding to the particular row. Figure 4 shows
the number of neighboring nodes of corner, edge, face and
interior nodes to be 7, 11, 17 and 26 respectively. A node that
has n neighboring nodes, will have 3(n+ 1) non-zero entries
in the corresponding rows of the global stiffness matrix. Since
nodal computations are not shared among any threads, no race
condition is observed. The basic steps followed in this kernel
for all the approaches are as follows,

• Based on the position of the node (interior, edge, corner
or face), row indices are filled in the respective array.

• A set is formed for each node containing the immediate
neighboring node numbers.

• Based on the neighboring set, the column indices are
computed and filled in the respective array.

2) Kernel 2: This kernel computes the values of the NZ
entries in the global stiffness matrix based on the indices
calculated in the previous kernel. An element by element
assembly strategy is adopted for the implementation. Since,



Fig. 4. Neighboring nodes of corner, edge, face and interior nodes

several threads are responsible for computing the same shared
node, race condition must be taken care of. Two different
approaches are presented for the same. For the approach with
atomic operations, one thread is assigned to one element of the
mesh, whereas, for the coloring approach, this kernel is broken
into eight different kernels and eight threads are assigned to
each element of the finite element mesh. Each element has
eight nodes, and hence 8× 8 = 64 node-to-node connections.
Each of these connections writes 9 entries into the value array.
The basic steps of this kernel are as follows,

• Computing row index, column index and value for each
entry of a connection to be written.

• Finding out the target range of row indices for each
connection.

• Finding the column index within the corresponding range
in the column array by bisection search.

• Adding the value of the elemental stiffness entry to the
particular global stiffness entry.

Figure 5 shows a typical diagonal node-to-node connection.
After locating the 9 target indices using bisection search,
entries in [K]e corresponding to this connection are added
to the target indices of [K].

B. Sparse Formats

After the process of assembly, the resulting global stiffness
matrix is in general sparse in nature. To take advantage of
the sparsity while solving the system of equations as well
as to cut down on the storage requirements, the assembled
matrix is stored using one of the specialized sparse formats.
In the existing literature COO and CSR formats are primarily
preferred [3], [9]. Three different formats are analyzed in
the present work and corresponding assembly strategies are
developed.

1) Assembly using COO format: COO or coordinate format
is the most basic sparse matrix storage format. It is typically

   g[K]  =

6

5 8

7

4

32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1
4
7

2
5
8

. . . . . . (K + a) (K  + b) (K  + c) . . . . . . . . . . . . . . 3

. . . . . . (K + d) (K  + e) (K  + f). . . . . . . . . . . . . . . 6

. . . . . . (K + g) (K  + h) (K  + i). . . . . . . . . . . . . . . 9

  

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

. . . . . a b c . . . . . 

. . . . . d e f . . . . .

. . . . . g h i . . . . . 

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . .

            [K]  =                    e

1

node−to−node connections : 

                            (2,1) , (2,2) , (2,3) , . . . , (2,8) ,
                            (3,1) , (3,2) , (3,3) , . . . , (3,8) ,

                            (5,1) , (5,2) , (5,3) , . . . , (5,8) ,

                            (7,1) , (7,2) , (7,3) , . . . , (7,8) ,

                            (1,1) , (1,2) , (1,3) , . . . , (1,8) ,

                            (4,1) , (4,2) , (4,3) , . . . , (4,8) ,

                            (8,1) , (8,2) , (8,3) , . . . , (8,8) ,

                            (6,1) , (6,2) , (6,3) , . . . , (6,8) ,

Fig. 5. Assembly Procedure in Kernel 2

very suitable for assembly on the GPU [9]. It consists of three
one dimensional arrays for storing the row indices, column
indices and the values of the NZ entries. The algorithm for
this format is as follows,

• Kernel 1 stores the portion of the domain matrix required
by each particular thread-block to its corresponding
shared memory.

• With the help of the data stored in shared memory, each
thread block computes the row and column indices and
writes into global memory.

• Kernel 2 stores the portion of NZIndex and Connectivity
matrix required by each thread block into its correspond-
ing shared memory. The elemental stiffness is also stored
into the shared memory if required.

• Each thread performs a bisection search within the target
indices computed from sh NZIndex array.

• Required column index is located and the value is added
to the corresponding entry in the value array.

2) Assembly using CSR/CSC format: CSR and CSC for-
mats are similar to the COO format, except instead of either
the row or column indices, the row or column offsets are
recorded. This reduces the storage requirements for either the
row (CSR) or column (CSC) array. Since the global stiffness
matrix is symmetric in nature, both CSR and CSC formats es-
sentially yield the same result for the present implementation.
The process of directly assembling into CSR format is found
to be inefficient [9] as compared to COO. However, in the
present implementation of the addto method, by dividing the
assembly task effectively, similar performance from from CSR
method has been extracted compared to COO. The algorithm
of assembly into CSR is also similar to that of COO. It only
differs in the step where Kerenl 1 stores the row indices or
column indices depending on CSR or CSC. The number of
write operations performed is equal to (number of rows + 1)
instead of the number of NZ entries for this array.

3) Assembly using ELL format: To the best of the authors’
knowledge, this format has not been implemented for assembly



of finite element matrices on the GPU prior to the present
work. ELL format stores the NZ entries using two dense
matrices, each containing the same number of rows as the
original matrix and columns equal to the maximum number
of NZ in any row of the original matrix. One matrix stores
the column indices and the other stores the values of the NZ
entries. Due to the column major ordering of this format,
coalesced accesses to the global memory is ensured. Also,
since this format is already structured, NZIndex array is not
required by the threads to compute the indices. This reduces
the shared memory and register requirements by almost 30
percent resulting in a higher performance. The algorithm is as
follows

• Kernel 1 stores the portion of the domain matrix required
by each particular thread-block to its corresponding
shared memory.

• With the help of the shared data, the column indices are
calculated and written to the Index array.

• Kernel 2 stores the required portion of the connectivity
matrix into the shared memory.

• Based on the shared data, the values are computed and
written to the corresponding index of the value matrix.

In the proposed method of assembly, the effective time com-
plexity of the binary search algorithm is reduced drastically.
The time complexity of a binary search algorithm is O(log n).
In case of traditional addto method, the value of n is equal to
the number of NZ in [K]. By dividing the assembly task into
separate kernels, the value of n is reduced to a value between
24 & 81 for cubic hexahedron elements. In the traditional
addto method, after performing binary search, if the index is
not present in the index array, it is appended to the end of
the array and the value is written to the corresponding index
in the values array. If the index is already present, the value
simply is added to the value at the corresponding index. This
creates high control divergence within warps. The modified
addto method reduces divergence by dividing the kernels.

C. Strategies to avoid race condition

A race condition is a situation where the output becomes
dependent on the order or timing of a number of uncontrollable
events. This is a common occurrence in many studies concern-
ing FEM on GPU. A number of strategies are implemented
in the literature to avoid race condition. Examples include,
assigning each NZ to one thread[3], mesh coloring[3][6],
atomic operations[9], assembly-free methods [5] etc. In [9]
race condition is avoided by making multiple copies of the
indices where more than one write operations are to be
performed. For each write a different copy of the index
is selected. This ensures that no two parallel threads write
to the same memory location. Later, a reduction operation
is performed for the repeated indices using atomics, while
converting into CSR format. This method, although relatively
simple, poses problems for the present implementation because
of the high number of repeated writes. In Kernel 1, each node
is assigned to each thread, and there is no sharing of nodes
among any thread. So, no race condition is observed. However,

( a , 1) ( b , 2)

( d , 4)( c , 3)

( e , 5) ( f , 6 )

(h,8)

Colors : {1, 2, 3, 4, 5, 6}

Threads : {a, b, c, d, e, f}

Fig. 6. Coloring Scheme

in Kernel 2, each thread is assigned to an element of the
finite element mesh. Since all the elements share a number of
nodes with one or more neighboring elements, race condition
becomes unavoidable. Two different approaches are analyzed
for avoiding the race condition.

• Atomic Operations
• A specialized coloring algorithm
The primary use of atomic operation is to lock a particular

memory location until the operation is complete [10]. This, in
general, is undesirable because this serializes the execution of
parallel threads resulting in reduced performance. The present
implementation is designed to keep the number of threads
waiting for a lock to be released to a minimum to justify
the use of atomics. Especially for a large enough domain,
the amount of serialization becomes particularly less and the
results become comparable with the other method.

In the second approach, the grid is colored using eight
different colors such that no elements of the same color share
a node. An example of the coloring scheme is shown in figure
6. Eight different kernels each for one color are launched in
serial. The grid size is kept fixed as the algorithm is further
parallelized such that instead of one, eight threads collaborate
to assemble each element. Although a coloring scheme reduces
the parallelism in the algorithm, there is usually a large amount
of parallelism left specially in case of large mesh sizes. As
shown in figure 6, threads a to h collaborate to compute
the elements of color 1 to 8 in eight different kernels. Also,
since each thread-block computes approximately one eighth
of the number of elements as in the previous approach, the
shared memory and register requirements also become far less,
resulting in a higher theoretical occupancy and lower execution
time. This is why, although the eight kernels are launched in
serial to perform the same task, this scheme of coloring helps
ensure the same level of GPU utilization.

V. SOLUTION OF SIMULTANEOUS EQUATIONS

The global stiffness matrix obtained by assembly, as de-
scribed in the previous section, is singular in nature. To
complete the set of simultaneous equations, the essential and
natural boundary conditions are applied by modifying suitable
entries in the global stiffness matrix and load vector as men-
tioned in (4) respectively. Due to the large number of variables



Fig. 7. Standard cantillever problem with distributed end load
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specially in case of large grids, iterative methods, such as
Krylov (sub)space solvers are typically more suited than direct
solvers such as Cholskey decomposition. To solve the system
of equations, any standard library providing optimized sparse
matrix vector operations may be used. Cusp, a library for
sparse linear algebra and graph computations is used for the
present implementation [22].

VI. RESULTS AND DISCUSSION

To validate the proposed assembly strategies for the GPU,
the systems of equations for the deformation analysis of a
simple cantillever beam subjected to certain loading conditions
(as shown in figure 7) are compared with the results obtained
on the CPU. The average relative error in single and double
precision are compared and presented in figure 8. The amount
of error is found to decrease with increasing grid size.

A. Performance Analysis

For the experimental setup, the CPU version of the assembly
code is tested on a Intel Xeon ES1650 (6 core, 3.2 GHz) with
16 gigabytes of RAM. For the GPU version, a Tesla K40c
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Fig. 10. Achieved speedup for COO format using atomics and graph coloring

with 12 gigabytes of global memory is used. The K40c has 15
streaming multiprocessors and 192 cores per multiprocessor,
with a memory bandwidth of 288 GB per second.

The code used for reference follows an algorithm similar to
the proposed addto method of assembly in COO format written
for CPU. Because of the serial nature of the algorithm, no
coloring or atomics is required. The timings of the GPU code
are recorded with cudaEventRecord and include time taken by
the kernels as well as CPU-GPU data transfers. To measure
the execution time for the CPU, clock() function is used.

In figure 9 the storage requirements of the global stiffness
matrix for different storage formats are presented. While the
storage requirements for ELL and CSR are almost similar,
COO format requires almost 50% more storage space com-
pared to the other formats for the same grid size. For the
present hardware, the largest grid possible to assemble has
close to 4 million nodes. For a larger mesh size, domain
decomposition techniques [23] may be employed to perform
assembly. A graph partitioning library such as METIS [24]
may be used to partition the finite element mesh for the same.

In figures 10, 11 and 12, the achieved speedup is compared
with the number of elements using a semi logarithmic scale.
With all the three storage formats, coloring approach is found
to produce better results than the approach with atomics.
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In figure 13, the execution time of each implementation are
compared. Figure 13 also shows time required by different
parts of each implementation. ELL format with coloring is
found to be the most efficient of all approaches. It also has
the lowest percentage of time taken by Kernel 2 among all
methods. In all the approaches, Kernel 2 is found to be the
most time consuming part of the proposed assembly procedure,
whereas, Kernel 1 takes almost same time for all cases.

VII. CONCLUSION

This paper presents a number of strategies to perform as-
sembly of global stiffness matrix for FEA in three dimensions
performed on CUDA enabled graphics cards. We present a
strategy to efficiently implement addto method on GPU with
different sparse formats, while alleviating its inherent difficul-
ties, as mentioned in [5]. The method is found to produce
considerable speedup compared to a well-optimized code for
assembly on CPU as demonstrated in the previous section. It
should be mentioned here that such high values of speedup,
specially for the ELL format is only possible because the as-
sembly process does not include the numerical integration step,
which is only permissible for structured meshes. Including the
numerical integration will inevitably reduce the speedup by
a significant amount. It can be concluded that, the proposed
coloring approach performs better than the approach with
atomics for the test problem. For a Finite element mesh with
a high number of elements sharing one node, the method with
atomics may perform better due to the reduced parallelism in
coloring approach. Among all the sparse formats, assembly
into ELL is found to take least time due to the reduced shared
memory and register requirements, whereas assembly into
CSR format requires least amount of storage space. It is also
seen that unlike the traditional addto method as concluded in
[9], assembly into CSR provides similar results to that of COO
in case of the modified approach. Although implementation on
unstructured grid is not discussed in the present work, similar
strategies can be adopted for the same.
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