MIMO Wireless Communications: An Introduction

Dr. Rakhesh Singh Kshetrimayum
MIMO Wireless Communications

- Single Input Single Output (SISO)

![Fig. 1 SISO system](image)

- What will happen if Tx and Rx employs multiple antennas?
MIMO Wireless Communications

• Multiple Input Multiple Output (MIMO)?

Fig. 2 $N_T \times N_R$ MIMO system
MIMO Wireless Communications

• What are advantages of MIMO?
• Capacity (C) for Single Input Single Output (SISO) system
 \[C = BW \log_2(1 + SNR) \]
• Data rate increase when
 – Bandwidth (BW) and
 – Signal to noise (SNR) power increase

Inherent problems:
• BW is precious, almost and always fixed for different applications
MIMO Wireless Communications

• Signal power increase
 – battery lifetime decrease
 – creates higher interference
 – needs expensive RF amplifier

• In MIMO, spectral efficiency increase
 – Without increasing BW and
 – Signal power
MIMO Wireless Communications

• But, how?

• Basically two gains for MIMO systems:
 – (i) MUX/rate gain
 – Capacity behavior \(R \approx r \log_2(SNR) \)

\[
r = \lim_{SNR \to \infty} \frac{R(SNR)}{\log_2(SNR)}
\]
MIMO Wireless Communications
• For instance
• How much is the achievable rate gain?

\[R \approx 3 \log_2(SNR) \]

Fig. 3 Achievable rate gain with 3 × 3 MIMO system
MIMO Wireless Communications

(ii) Diversity gain

• Error probability behavior (minimize it) \(P_e(SNR) \approx SNR^{-d} \)
• Slope of symbol error rate/ bit error rate (SER/BER curve increases)
• Behavior of error probability w.r.t. average transmit power in log-log scale
 • for asymptotically high power

\[
d = - \lim_{SNR \to \infty} \frac{\log_2 \left\{ P_e(SNR) \right\}}{\log_2(SNR)}
\]
MIMO Wireless Communications

• How much is diversity gain?

\[P_e(SNR) \approx SNR^{-9} \]

Fig. 4 Diversity gain of 3×3 MIMO system

• For SISO (Rayleigh fading case), $d=1$, \(P_e(SNR) \approx SNR^{-1} \)
MIMO Wireless Communications

• How much is rate and diversity gain?

![Diagram of 3x3 MIMO system with two transmit antennas and three receive antennas, showing rate and diversity gain for Case I.]

Fig. 5 Rate and diversity gain of 3 × 3 MIMO system (Case I)

\[R \approx \log_2(\text{SNR}) \]

\[P_e(\text{SNR}) \approx \text{SNR}^{-4} \]
MIMO Wireless Communications

• How much is rate and diversity gain?

Fig. 6 Rate and diversity gain of 3×3 MIMO system (Case II)

\[R \approx 2 \log_2(SNR) \]

\[P_e(SNR) \approx SNR^{-1} \]
MIMO Wireless Communications

- Need for a proper design for MIMO systems
- As r decrease, d increase
- As r increase, d decrease
- Diversity-multiplexing trade-off [1]

$$d_{opt} = (N_T - r)(N_R - r), 0 \leq r \leq \min(N_T, N_R)$$
MIMO Wireless Communications

• Narrowband MIMO System Model

Fig. 7 Narrowband MIMO system model for 2×2 MIMO system
MIMO Wireless Communications

At receiving antenna 1 (receives mixture of signals 1 & 2)
\[y_1 = h_{11}x_1 + h_{12}x_2 + n_1 \]

At receiving antenna 2 (receives mixture of signals 1 & 2, a major problem in MIMO detection)
\[y_2 = h_{21}x_1 + h_{22}x_2 + n_2 \]

In matrix form, \(\mathbf{y} = \mathbf{H} \mathbf{x} + \mathbf{n} \)
\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix}
=
\begin{bmatrix}
 h_{11} & h_{12} \\
 h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
+
\begin{bmatrix}
 n_1 \\
 n_2
\end{bmatrix}
\]
MIMO Wireless Communications

• For $N_T \times N_R$ MIMO system

$$
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_{N_R}
\end{bmatrix}
=
\begin{bmatrix}
 h_{11} & h_{12} & \cdots & h_{1N_T} \\
 h_{21} & h_{22} & \cdots & h_{2N_T} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{N_R1} & h_{N_R2} & \cdots & h_{N_RN_T}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_{N_T}
\end{bmatrix}
+
\begin{bmatrix}
 n_1 \\
 n_2 \\
 \vdots \\
 n_{N_R}
\end{bmatrix}
$$

Received signal vector Channel matrix Transmitted signal vector Noise signal vector
MIMO Wireless Communications

• In order to have performance analysis of MIMO channel
 – we need Analytical MIMO channel models

• **Analytical MIMO channel model**
 – i.i.d. MIMO channel model
 – Separately correlated MIMO channel model
 – Uncorrelated keyhole MIMO channel model
MIMO Wireless Communications

- i.i.d. MIMO channel model (each element of the channel matrix \mathbf{H} is complex random variable)

$$h_{ij} = h_{ij}^{real} + jh_{ij}^{imag} ; i = 1,2, \cdots N_R; j = 1,2, \cdots N_T$$

$$h_{ij}^{real/imag} \sim N\left(0, \frac{1}{2}\right)$$

$$\Rightarrow p(h_{ij}^{real/imag}) = \frac{1}{\sqrt{2\pi \times \frac{1}{2}}} \exp \left(- \frac{(h_{ij}^{real/imag})^2}{2 \times \frac{1}{2}}\right)$$
MIMO Wireless Communications

Complex Gaussian distribution
→ Joint distribution of real and imaginary part
→ They are assumed independent
→ PDF can be multiplied

\[h_{ij} \sim N_C(0,1) \]

\[\Rightarrow p(h_{ij}) = \frac{1}{\sqrt{\pi}} \exp\left(-\left(h_{ij}^{\text{real}}\right)^2\right) \frac{1}{\sqrt{\pi}} \exp\left(-\left(h_{ij}^{\text{imag}}\right)^2\right) \]

\[\Rightarrow p(h_{ij}) = \frac{1}{\pi} \exp\left(-\left(h_{ij}^{\text{real}}\right)^2 + \left(h_{ij}^{\text{imag}}\right)^2\right) \]

\[\Rightarrow p(h_{ij}) = \frac{1}{\pi} \exp\left(-|h_{ij}|^2\right) \]
MIMO Wireless Communications

For i.i.d. case,

\[p_H(H) = \prod_{i,j=1}^{N_R,N_T} \frac{1}{\pi} \exp\left\{-|h_{i,j}|^2\right\} = \frac{1}{\pi^{N_RN_T}} \exp\left\{-\sum_{i,j=1}^{N_R,N_T} |h_{i,j}|^2\right\} \]

\[p_H(H) = \frac{1}{\pi^{N_RN_T}} \exp\left(-\text{Trace}\left(HH^H\right)\right) \]

“etr” is the abbreviation for “exponential trace”.

\[p_H(H) = \pi^{-N_RN_T} \text{etr}\left\{-HH^H\right\} \]
MIMO Wireless Communications

\[\text{trace}(HH^H) \]

\[= \text{trace} \left(\begin{bmatrix}
 h_{11} & h_{12} & \cdots & h_{1N_T} \\
 h_{21} & h_{22} & \cdots & h_{2N_T} \\
 \vdots & \ddots & \ddots & \vdots \\
 h_{N_R1} & h_{N_R2} & \cdots & h_{N_RN_T}
\end{bmatrix} \begin{bmatrix}
 h_{11} & h_{21} & \cdots & h_{N_R1} \\
 h_{12} & h_{22} & \cdots & h_{N_R2} \\
 \vdots & \ddots & \ddots & \vdots \\
 h_{N_T1} & h_{N_T2} & \cdots & h_{N_RN_T}
\end{bmatrix}^* \right) \]

\[= \text{trace} \left(\begin{bmatrix}
 |h_{11}|^2 + |h_{12}|^2 + \cdots + |h_{1N_T}|^2 \\
 \vdots & \vdots & \vdots & \vdots \\
 |h_{21}|^2 + |h_{22}|^2 + \cdots + |h_{2N_T}|^2 \\
 \vdots & \vdots & \vdots & \vdots \\
 |h_{N_{R1}}|^2 + |h_{N_{R2}}|^2 + \cdots + |h_{N_{RN_{T}}}|^2
\end{bmatrix} \right) \]

\[= \sum_{i,j=1}^{N_R \cdot N_T} |h_{i,j}|^2 \]
MIMO Wireless Communications

- MIMO channel parallel decomposition
- To see how much is the capacity increase in MIMO systems

Fig. 8 Transmit precoding and receiver shaping (needs CSIR and CSIT)
MIMO Wireless Communications

• From SVD of the channel matrix \mathbf{H}, we have,

\[
\mathbf{H} = \mathbf{U} \Sigma \mathbf{V}^H
\]

\[
\tilde{\mathbf{y}} = \mathbf{U}^H \mathbf{y} = \mathbf{U}^H (\mathbf{H} \mathbf{x} + \mathbf{n}) = \mathbf{U}^H \left(\mathbf{U} \Sigma \mathbf{V}^H \mathbf{x} + \mathbf{n} \right)
\]

\[
\Rightarrow \tilde{\mathbf{y}} = \mathbf{U}^H \left(\mathbf{U} \Sigma \mathbf{V}^H \mathbf{V} \tilde{\mathbf{x}} + \mathbf{n} \right)
\]

\[
\Rightarrow \tilde{\mathbf{y}} = \Sigma \tilde{\mathbf{x}} + \tilde{\mathbf{n}}
\]
MIMO Wireless Communications

- Component-wise

\[
\begin{bmatrix}
\tilde{y}_1 \\
\tilde{y}_2 \\
\vdots \\
\tilde{y}_{R_H} \\
\vdots \\
\tilde{y}_{N_R}
\end{bmatrix} =
\begin{bmatrix}
\sigma_1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma_2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma_{R_H} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \ddots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \sigma_{N_T} & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{x}_1 \\
\tilde{x}_2 \\
\vdots \\
\tilde{x}_{R_H} \\
\vdots \\
\tilde{x}_{N_T}
\end{bmatrix} +
\begin{bmatrix}
\tilde{n}_1 \\
\tilde{n}_2 \\
\vdots \\
\tilde{n}_{R_H} \\
\vdots \\
\tilde{n}_{N_R}
\end{bmatrix}
\]
MIMO Wireless Communications

• Parallel R_H Gaussian channels

\[
\begin{align*}
\tilde{y}_1 &= \sigma_1 \tilde{x}_1 + \tilde{n}_1 \\
\tilde{y}_2 &= \sigma_2 \tilde{x}_2 + \tilde{n}_2 \\
&\vdots \\
\tilde{y}_{R_H} &= \sigma_{R_H} \tilde{x}_{R_H} + \tilde{n}_{R_H} \\
&\vdots \\
\tilde{y}_{N_R} &= \tilde{n}_{N_R}
\end{align*}
\]

• Capacity?

• increases R_H fold
MIMO Wireless Communications

• Rate Gain $\sqrt{\text{ }}$
• Diversity gain \times

Space-time codes

Implemented at the transmitter side, needs CSIR and block fading

• Why space-time codes?

\[\overline{P_e} \approx \frac{c}{(G_c S)^{G_d}} \]
MIMO Wireless Communications

- where S is the SNR
- c is a scaling constant specific to the
 - modulation employed and
 - the nature of the channel
- $G_c \geq 1$ denotes the coding gain and
- G_d is the diversity order of the system
MIMO Wireless Communications

- Diversity gain/order determines the:
 - negative slope of an error rate curve plotted vs SNR on a log-log scale

\[
\log_2 \left(\bar{P}_e \right) \approx \log_2 c - G_d \log_2 G_c - G_d \log_2 S
\]

- Space-time coded scheme with diversity order \(G_d \) has
 - an error probability at high SNR behaving as

\[
\bar{P}_e \approx (S)^{-G_d}
\]
If there is some coding gain, then

– average probability of error will be of the form

$$
\bar{P}_e \approx \frac{1}{(G_c S)^{G_d}}
$$

• If there were no array or power gain then

– the probability of error expression will be of the form

$$
\bar{P}_e \approx \frac{1}{G_c (S)^{G_d}}
$$
MIMO Wireless Communications

• The coding gain determines the
 – horizontal shift of uncoded system error rate curve to the
 • space time coded error rate curve
 • plotted on a log-log scale obtained for the same diversity order
Fig. 9 Illustration of diversity and coding gains

- BER curves are usually waterfall type but
 - we have shown straight lines for illustration purpose only
MIMO Wireless Communications

• Alamouti Space-Time Codes

\[
\langle s^1, s^2 \rangle = s^1 \left(s^2 \right)^H = 0
\]

\[
s^1 = [s_1 - (s_2)^*]^T \quad s^2 = [s_2 (s_1)^*]^T
\]

Fig. 10 A block diagram of Alamouti space-time encoder
Fig. 11 Alamouti’s space-time decoding.
MIMO Wireless Communications

- Received signal vector
 \[\mathbf{r} = \mathbf{Hs} + \mathbf{n} \]

- Received signals in two time intervals
 \[
 \begin{bmatrix}
 r_1 \\
 r_2
 \end{bmatrix} =
 \begin{bmatrix}
 s_1 & s_2 \\
 -s_2^* & s_1^*
 \end{bmatrix}
 \begin{bmatrix}
 h_1 \\
 h_2
 \end{bmatrix}
 +
 \begin{bmatrix}
 n_1 \\
 n_2
 \end{bmatrix}
 \]

- The output of the combiner
 \[\tilde{\mathbf{r}} = \mathbf{H}^H \mathbf{Hs} + \tilde{\mathbf{n}} \]

 \[
 \begin{bmatrix}
 \tilde{r}_1 \\
 \tilde{r}_2
 \end{bmatrix} =
 \begin{bmatrix}
 h_1^* & h_2 \\
 h_2^* & -h_1
 \end{bmatrix}
 \begin{bmatrix}
 r_1 \\
 r_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 h_1^* r_1 + h_2 r_2^* \\
 h_2^* r_1 - h_1 r_2^*
 \end{bmatrix}
 \]
MIMO Wireless Communications

\[\tilde{r}_1 = (|h_1|^2 + |h_2|^2)s_1 + \tilde{n}_1, \quad \tilde{r}_2 = (|h_1|^2 + |h_2|^2)s_2 + \tilde{n}_2 \]

• For 2×1 MIMO system, two signals are picked up by
 – the receiving antenna at the receiver
• Two signals are completely decoupled after the combining operation
 – for Alamouti Space Time Codes
• Simplifies greatly the detection strategy in comparison
 – to conventional MIMO detection
MIMO Wireless Communications

• Applying MLD
• For \(0 \leq t \leq T\), we have

\[
\hat{s}_1 = \arg\min_{m} \left\| \tilde{r}_1 - \left(|h_1|^2 + |h_2|^2 \right) s_m \right\|, \quad s_m \in \{s_k\}_{k=1}^{M}
\]

• For \(T \leq t \leq 2T\), we have,

\[
\hat{s}_2 = \arg\min_{m} \left\| \tilde{r}_2 - \left(|h_1|^2 + |h_2|^2 \right) s_m \right\|
\]
MIMO Wireless Communications

MIMO detection

• Detect signals jointly
 – since many signals are transmitted from the transmitter to the receiver

• Maximum likelihood (ML) detection outputs the vector which
 minimizes the Euclidean distance between
 – the received vector and
 – all possible combinations of the transmitted symbol vectors

\[
\hat{s} = \arg \min_x \|r - Hs\|^2
\]
MIMO Wireless Communications

• Consider 2 \times 2 MIMO system

\[\mathbf{r} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}; \mathbf{H} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}; \mathbf{s} = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}; \mathbf{n} = \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}\]

\[\mathbf{r} = \mathbf{Hs} + \mathbf{n}\]

\[\Rightarrow \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}\]
MIMO Wireless Communications

• At the detector,
 – we want to detect s_1 and s_2 at time t,
 – but there exist interference between these two signals

$$r_1 = h_{11}s_1 + h_{12}s_2 + n_1; r_2 = h_{21}s_1 + h_{22}s_2 + n_2$$

• Assume that s_k are modulated in M-ary constellation i.e., $s_k \in \{s_1, s_2, ..., s_M\}$
MIMO Wireless Communications

• We need to find the minimum metric of the Euclidean distance

\[
\min_{i,j\in\{1,2,\ldots,M\}} \left[\|r_1 - \left(h_{11}s_i + h_{12}s_j \right) \|^2 + \|r_2 - \left(h_{21}s_i + h_{22}s_j \right) \|^2 \right]
\]

\[
\min_{i,j\in\{1,2,\ldots,M\}} \left[\left\| (h_{11}s_i + h_{12}s_2 + n_1) - \left(h_{11}s_i + h_{12}s_j \right) \right\|^2 + \left\| (h_{21}s_1 + h_{22}s_2 + n_2) - \left(h_{21}s_i + h_{22}s_j \right) \right\|^2 \right]
\]

• For instance, 16-QAM, \((s_1,s_2)\) are (1 of 16 symbols, 1 of 16 symbols) implies 16×16 pairs
MIMO Wireless Communications

• Metric calculations of 256 are required
• For 3×3 MIMO system,
 – $N_T=N_R=3$, metric calculations of $16^3=4096$ are required
• For 5×5 MIMO system,
 – $N_T=N_R=5$, metric calculations of $16^5=10,48,576$ are required
• which is obviously impractical
MIMO Wireless Communications

- ML detectors are optimal but impractical
- Low complexity suboptimal detectors like
 - Zero forcing (ZF) and
 - Minimum mean square error (MMSE)
- are preferable
- In linear detector,
- a linear preprocessor \(\mathbf{W} \) is first applied
 - to the received signal vector

\[
\hat{s} = \mathbf{W}^H \mathbf{r}
\]
MIMO Wireless Communications

• For instance in ZF

\[\hat{s} = W_{ZF}^H r = H^+ r = s + H^+ n \]

• \(H^+ \) is the Moore Penrose pseudo-inverse of \(H \)

\[W_{ZF}^H = H^+ = (H^H H)^{-1} H^H \]

• Performance is not so good

• Consider a 2×2 MIMO system with \(s \in S = \{-3, -1, 1, 3\} \)
MIMO Wireless Communications

- The channel matrix is given by $H = [2 \ 0.5; 1 \ 2]$.
- Suppose the received signal vector is $r = [1 \ 0.9]^T$.
- The ZF detector’s output is given by
 \[
 \hat{s} = H^+ r = [0.5 \ 0.2]^T
 \]
- Thus the hard decision of for s becomes $[1 \ 1]^T$
 – which is different from the ML decision of $[1 \ -1]^T$
- ZF less complex than MLD, but poor performance.
MIMO Wireless Communications

Antenna selection [2]

• Reduce hardware complexity

• A subset of total available antennas selected
 – Based on capacity maximization
 – Based on maximum received SNR
 – Done at transmitter, at receiver or both
MIMO Wireless Communications

- Transmit Antenna Selection/Maximal Ratio Combining (TAS/MRC) [3]

Fig. 12 3 × 3 TAS/MRC MIMO system
MIMO Wireless Communications

• How to select antenna?
• By maximizing the received SNR \(I = \arg \max \{ C_i = \sum_{j=1}^{N_r} |h_{i,j}|^2 \} \)
• For Rayleigh fading channel,
 \(- C_i \) are i.i.d. Chi square distributed with the probability density function (PDF) and cumulative distribution function (CDF) as
 \[
p(x) = \frac{1}{(N_r - 1)!} x^{N_r-1} e^{-x}, \quad x \geq 0
 \]
 \[
P(x) = 1 - e^{-x} \sum_{i=0}^{N_r-1} \frac{x^i}{i!}, \quad x \geq 0
 \]
MIMO Wireless Communications

- Order statistics
- PDF of maximum received SNR $C_{(N_t)}$ such that $C_{(1)} \leq C_{(2)} \leq \ldots \leq C_{(N_t)}$ can be given as [4]

$$p_{(N_t)}(x) = N_t[P(x)]^{N_t-1} p(x)$$

$$= \frac{N_t}{(N_t - 1)!} \left(1 - e^{-x} \sum_{i=0}^{N_t-1} \frac{x^i}{i!}\right)^{N_t-1} \cdot x^{N_t-1} e^{-x}$$
MIMO Wireless Communications

• Assume binary phase shift keying (BPSK) for TAS/MRC MIMO system

• Instantaneous SNR at the MRC receiver

\[\gamma_b = \gamma \sum_{j=1}^{N_r} |h_{N_t,j}|^2 = \gamma C_{(N_t)} \]

• The average BER

\[P_2 = \int_{0}^{\infty} Q(\sqrt{2 \gamma_b}) p_{\gamma_b}(\gamma_b) d\gamma_b \]

Conditional error probability (CEP) for BPSK
MIMO Wireless Communications

• Thus, closed form expression for BER Rayleigh fading is

\[
P_2 = \frac{N_t}{(N_r-1)!} \sum_{k=0}^{N_t-1} \left[\frac{(-1)^k \binom{N_t-1}{k}}{[2(k+1)]^{N_r}} \right] \times \sum_{t=0}^{k(N_r-1)} \left[a_t(N_r,k)(N_r+t-1) \times \left(1 - \sqrt{\frac{\gamma}{\gamma+k+1}} \right)^{N_r+t} \right]
\]

\[
\times \sum_{j=0}^{N_r+t-1} 2^{-j} \binom{N_r+t-1+j}{j} \times \left(1 + \sqrt{\frac{\gamma}{\gamma+k+1}} \right)^j \right] \}
\]

• where, \(a_t(N_r,k) \) is the coefficient of \(z^{2t} \) in the expansion of

\[
\left\{ \sum_{i=0}^{N_r-1} \frac{z^i}{2(k+1)\ i!} \right\}^k
\]
MIMO Wireless Communications

• $\eta - \mu$ distribution proposed by M. Yacoub in 2000 (can analyze non LOS propagation)
• Can model many distributions
• Some of the special cases of $\eta - \mu$ distribution are
 – Rayleigh distribution for $\eta \to 1, \mu = 0.5$,
 – one sided Gaussian distribution for $\eta \to 1, \mu = 0.25$,
 – Nakagami-m distribution for $\eta \to 1, \mu = m/2$ and
 – Hoyt distribution for $\eta \to q^2, \mu = 0.5$
• BER analysis for TAS/MRC over $\eta - \mu$ fading channel can be carried out in the similar way
Fig. 13: BER performance of (2, 1; 1) TAS/MRC system over $\eta - \mu$ fading channels for $\eta = 1$ with BPSK modulation
MIMO Wireless Communications

Spatial modulation

- Two information bearing units
 - Transmit antenna index: estimated at receiver
 - A symbol from signal constellation: transmitted from antenna corresponding to transmit antenna index

- Advantages
 - Higher capacity
 - Reduced hardware complexity
 - Avoidance of transmit antenna synchronization

- How?
MIMO Wireless Communications

Table 1: SM Mapping Table for two cases

<table>
<thead>
<tr>
<th>Input Bits</th>
<th>$N_t = 2, M = 4$ (QAM)</th>
<th>$N_t = 4, M = 2$ (BPSK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antenna Number</td>
<td>Transmit Symbol</td>
</tr>
<tr>
<td>000</td>
<td>1</td>
<td>+1+j</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>+1-j</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>-1-j</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
<td>-1+j</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>+1+j</td>
</tr>
<tr>
<td>101</td>
<td>2</td>
<td>+1-j</td>
</tr>
<tr>
<td>110</td>
<td>2</td>
<td>-1-j</td>
</tr>
<tr>
<td>111</td>
<td>2</td>
<td>-1+j</td>
</tr>
</tbody>
</table>
MIMO Wireless Communications

Fig. 14 SM system model [5]
MIMO Wireless Communications

• k bit information blocks
• Sub blocks of m bits and n bits
 • n bits spatially modulated
 • m bits modulated using digital modulation schemes
• m bits are transmitted physically, effectively similar to transmitting $k=m+n$ bits
• Restriction on the number of transmit antennas
 • Integer exponent of 2
MIMO Wireless Communications

SM Receiver

- MRC diversity scheme
- Two step detection of transmitted symbol
- Antenna index estimation \((\mathbf{h}_j)^H \mathbf{y}\) is noise except for actual transmit antenna

\[
\hat{j} = \arg \max_j \frac{|\mathbf{h}_j^H \mathbf{y}|}{\|\mathbf{h}_j\|^2}
\]

- ML symbol detection \(\mathbf{y} = \sqrt{\rho} \mathbf{h}_j \mathbf{x}_q + \mathbf{n}\) transmit antenna [6]

\[
\hat{x}_q = \arg \min_j \left\| \mathbf{h}_j \mathbf{x}_q \right\|^2 - 2 \text{Re}\left\{\mathbf{h}_j^H \mathbf{y} \mathbf{x}_q^*\right\}
\]
MIMO Wireless Communications

- Assume two estimation processes are independent
 - Transmit antenna index estimate
 - Estimation of the transmit symbol

- Notation
 - P_a is probability that the antenna index estimation is incorrect
 - P_s is probability that the transmitted symbol estimation is incorrect
MIMO Wireless Communications

- Probability of correct estimation
 \[P_c = \left(1 - P_a\right)\left(1 - P_s\right) \]

- Probability of error
 \[P_e = 1 - P_c = 1 - \left(1 - P_a\right)\left(1 - P_s\right) = P_e \]
 \[= P_a + P_s - P_a P_s \]

- Assume QAM

- CEP
 \[P_e(\gamma) = aQ\left(\sqrt{b\gamma}\right) - cQ^2\left(\sqrt{b\gamma}\right) \]
MIMO Wireless Communications

- Table 2 MODULATION PARAMETERS FOR VARIOUS MODULATION SCHEMES [8]

<table>
<thead>
<tr>
<th>Modulation Scheme</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>BFSK</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MPSK</td>
<td>2</td>
<td>$2\sin\left(\frac{\pi}{M}\right)$</td>
<td>0</td>
</tr>
<tr>
<td>MPAM</td>
<td>$\frac{2(M - 1)}{M}$</td>
<td>$\frac{6}{M^2 - 1}$</td>
<td>0</td>
</tr>
<tr>
<td>QPSK or MSK</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Coherent DPSK</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MQAM</td>
<td>$\frac{4\sqrt{M - 1}}{\sqrt{M}}$</td>
<td>$\frac{3}{M - 1}$</td>
<td>$4\left(\frac{\sqrt{M} - 1}{\sqrt{M}}\right)^2$</td>
</tr>
</tbody>
</table>
MIMO Wireless Communications

• Q-function as sum of exponentials [7]

\[Q(x) \approx \frac{1}{12} e^{-\frac{x^2}{2}} + \frac{1}{4} e^{-\frac{2x^2}{3}} \]

• CEP becomes

\[P_e(\gamma) \approx \frac{a}{12} e^{-\frac{b\gamma}{2}} + \frac{a}{4} e^{-\frac{2b\gamma}{3}} - \frac{c}{144} e^{-b\gamma} - \frac{c}{16} e^{-\frac{4b\gamma}{3}} - \frac{c}{24} e^{-\frac{7b\gamma}{6}} \]

• where a=2, b=1, and c=1 for 4-QAM
MIMO Wireless Communications

• the integral of fits the definition of MGF [9] of the received SNR, $MGF(\gamma)$.

$$MGF(\gamma) = \int_{0}^{\infty} \exp(-\gamma x) p_x(x) dx$$

• Probability of error in symbol detection

$$P_s \approx \frac{1}{6} MGF\left(\frac{\gamma}{2}\right) + \frac{1}{2} MGF\left(\frac{2\gamma}{3}\right) - \frac{1}{4} \left[\frac{1}{36} MGF\left(\gamma\right) + \frac{1}{4} MGF\left(\frac{4\gamma}{3}\right) + \frac{1}{6} MGF\left(\frac{7\gamma}{6}\right) \right]$$
MIMO Wireless Communications

- Probability of error in transmit antenna index estimation
 \[P_a = Q\left(\sqrt{\gamma_{\text{eff}}}\right) \approx \frac{1}{12} \text{MGF}\left(\frac{\gamma}{4}\right) + \frac{1}{4} \text{MGF}\left(\frac{\gamma}{3}\right) \]

- where
 \[\gamma_{\text{eff}} = \frac{\gamma}{2} \left\| h_j - h_j \right\|^2 \]

- MGF for Rice fading case
 \[\text{MGF}_{\text{Rice}}(\gamma) = \frac{1 + K}{1 + K + \gamma} \exp\left(-\frac{K\gamma}{1 + K + \gamma}\right) \]
MIMO Wireless Communications

• Fig. 15 SER vs SNR (dB) for 2×2 SM MIMO system considering Rician fading
MIMO Wireless Communications

- SM with antenna selection [10]
- Some of the selected antennas for SM may be completely down
- SM systems combined with antenna selection
 - Antennas selected at transmitter
 - SM applied over selected antennas with better links
- CSI assumed to be available at transmitter
MIMO Wireless Communications

• SM with antenna selection

Apply SM on selected antennas which give the best links

Fig. 16 4 × 4 TAS SM MIMO system
MIMO Wireless Communications

- Order statistics
- Antenna Selection Parameter

\[A_j = \sum_{i=1}^{N_r} |h_{i,j}|^2 \]

\[f_{A_j}(x) = \frac{x^{N_r-1}e^{-x}}{\Gamma(N_r)}, x \geq 0 \]

\[F_{A_j}(x) = 1 - e^{-x} \sum_{i=0}^{N_r-1} \frac{x^i}{i!}, x \geq 0 \]
MIMO Wireless Communications

• A_js are arranged in ascending order
• S antennas corresponding to highest A_js are selected
• PDF of $A(r)$ such that $A_{(1)} \leq A_{(2)} \leq \ldots \leq A_{(N_t)}$ can be given as

$$f_{A(r)}(x) = \frac{1}{B(r, N_t - r + 1)} \{F_{A_j}(x)\}^{r-1} \{1 - F_{A_j}(x)\}^{N_t-r} f_{A_j}(x)$$

• where $r = N_t - S + 1$
MIMO Wireless Communications

• The PDF of received SNR can be given as

\[f_{\gamma}^r(x) = \frac{1}{(N_t-r+1)\Gamma(N_r)} \sum_{i=r}^{N_t} \sum_{j=0}^{i-1} \sum_{t=0}^{M} \frac{1}{B(i,N_t-i+1)} \left(\begin{array}{c} i-1 \\ j \end{array} \right) (-1)^j C_t(j,N_r) x^{N_r+t-1} e^{-x(N_t-i+j+1)} \]

• where \(M = (N_r-1)(N_t-i+j) \) and \(C_t(j,N_r) \) is coefficient of \(x^t \) in

\[\left(\sum_{i=0}^{N_r-1} \frac{x^i}{i!} \right)^{N_t-i+j} \]
MIMO Wireless Communications

- Outage probability

\[
P_{out}(\gamma, R) = P_r \left\{ A_{(r)} < \frac{2^R - 1}{\gamma} \right\}
\]

\[
P_{out}(\gamma, R) = \frac{1}{(N_t - r + 1) \Gamma(N_r)} \sum_{i=r}^{N_t} \frac{1}{B(i, N_t - i + 1)}
\]

\[
\times \sum_{j=0}^{i-1} \binom{i-1}{j} (-1)^j \sum_{t=0}^{M} C_t(j, N_r) \frac{\gamma(N_r + t, \gamma_{th}(N_t - i + j + 1))}{(N_t - i + j + 1)^{(N_r + t)}}
\]

- where \(\gamma_{th} = \frac{2^R - 1}{\gamma} \)
MIMO Wireless Communications

Fig. 17: Outage Probability Vs. SNR curve for TAS SM MIMO systems with antenna selection (2 bits/s/Hz)
MIMO Wireless Communications

• References:

MIMO Wireless Communications

calculation of spatial modulation,” in Spread Spectrum Techniques
and Applications, 2008. ISSSTA ’08. IEEE 10th International

optimal detection and performance analysis,” Communications

and approximations for the computation of error probability in

combiner output in equally correlated Rayleigh, Rician, and
Nakagami-m fading channels,” IEEE Transactions on
MIMO Wireless Communications
