
Parallel Implementation of Memory Neuron Network for
Identification of Dynamical System

S. Suresh ∗, S. N. Omkar, V Mani
Department of Aerospace Engineering, Indian Institute of Science Bangalore 560012. India

∗suresh99@aero.iisc.ernet.in

Abstract

This paper discusses parallel algorithm of memory neuron networks for identification of nonlinear dynam-
ical systems. These are a class of recurrent networks obtained by adding trainable temporal elements to
feed-forward networks that makes the output history-sensitive. By virtue of this capability, these networks
can identify nonlinear dynamical systems without having to be explicitly fed past inputs and outputs.
Artificial neural networks (ANN) consist of enormous number of massively interconnected nonlinear com-
putational elements (neuron) and they are inherently parallel in nature. This paper presents an analysis of
neuron parallelism or vertical slicing using Message Passing Interface (MPI) library routines. The results
show that the parallel efficiency increase with increase in network size and also we can get linear speed up
if the number of processors are increased.

1 Introduction

There has been considerable interest in the past few years in the application of ANN for identification
and control of nonlinear dynamical systems[3,4]. In this paper we present a class of recurrent neural
networks called Memory Neuron Networks (MNN)[6] as general model for identification of nonlinear
dynamical systems. These networks are obtained by adding some trainable temporal elements to the
feedforward networks. The main attraction of these networks is that they have trainable internal memory
and hence can directly model dynamical systems.

Identification of dynamical nonlinear systems is recognition of temporal patterns of the systems. The
output of the physical systems to be modeled is a function of past inputs and outputs as well. In general,
the identification problem is complicated because of the model being used (e.g. ANN), should have
some internal memory. One can include dynamics directly into the network structure so that we can
learn nonlinear dynamical systems without assuming much knowledge of the systems. For this, what
we need are networks with some “internal memory” and learning algorithms for such networks. Due to
proven ability of feedforward networks to model nonlinear systems, it seems logical to explore recurrent
networks that are closely related to multiplayer feedforward networks.

In this paper we describe a recurrent network model with internal memory called the memory neuron
network[6,7]. Here each unit of neuron has, associated with it a memory neuron whose single scalar
output summarizes the history of the past activations of that unit. These memory neurons, or more
precisely the weight of connection into them represent trainable dynamical elements of the model. Since
the connection between a unit and its memory neuron involve feedback loops, the overall network is now

ADVANCES IN VIBRATION ENGINEERING, 2(2) 2003 © UNIVERSITIES PRESS (INDIA) PRIVATE LIMITED

2 S. SURESH et al. / ADVANCES IN VIBRATION ENGINEERING, 2(2) 2003

a recurrent one. This memory neuron and trainable temporal elements are sufficient for identification
of dynamical systems. Backpropagation through time (BPTT) is used for training MNN[7] . However,
the BPTT algorithm is computationally intensive. As a result, considerable interest has been focused on
studying parallel implementations[10].

Two main paradigms are used for parallelising the BPTT algorithm. They are network-based paral-
lelism and the training-set parallelism[8] . In network-based parallelism, the neural networks are parti-
tioned and distributed among the processors. This approach is called network slicing[2] . In training-set
parallelism, the training epochs are distributed to all the processors. Network-based parallelism uses
online learning in which weights are updated after each pattern; Training-set parallelism uses batch
learning, in which weights are updated after all the patterns are presented. Training-set parallelism con-
verges slowly, then the network-based parallelism[10].

In this paper we are using network-based parallelism and Message Passing Interface (MPI) library
routines for communications between the processors. The MPI library routine does not depend on
the underlying hardware that supports it. So we can use this program in heterogeneous architecture.
Heterogeneous processors networks consist of processors with different speed, memory and cost. They
offer very powerful environment for parallel computing. The primary aim of this paper is to illustrate
the utility of parallel algorithm to speed up the training of MNN.

The paper is organized as follows: section 2 gives brief description about MNN for identification of
dynamical systems. Section 3 deals about parallelisation and MPI library. Section 4 is on evaluation of
parallel algorithm, and the results are discussed in Section 5.

2 Memory Neuron Networks

In this section we describe the structure of the network that we use and the associated learning algorithm.
The network and the learning algorithm we use are similar to the one described in[7] . It may be pointed
out that it is possible to use other incremental learning algorithms, e.g., RTRL[9] , ALOPEX[5] with this
network.

2.1 Network structure

The architecture of the memory neuron network is shown in Fig. 1. The structure is the same as a
feedforward ANN except for the memory neurons (shown by small filled circle) attached to each unit in
the network (shown by large open circle). To distinguish these two types of units, we use term network
neuron and memory neuron. As can be seen from the figure, at each level of the network except the
output, each of the network neuron has exactly one memory neuron connected to it.

The memory neuron takes its input from the corresponding network neuron and it also has a self-
feedback as shown in inset of Fig. 1. This leads to accumulation of past data of the network neuron
in the memory neuron. All the network neuron and memory neuron send their outputs to the network
neurons of the next level. In the output layer, each network neuron can have cascade of memory neuron.
Figure 1 shows a network with two input nodes, one output node and a single hidden layer.

2.2 Identification

Here we discuss the example we had taken for simulation. We are using backpropagation through time
algorithm as explained in Sastry et al.[7] . We explain MNN for the identification of dynamical systems.
Denoteui(k) andyp(k) as input and output of a plant.

PARALLEL IMPLEMENTATION OF MEMORY NEURON NETWORK FOR IDENTIFICATION OF DYNAMICAL SYSTEM 3

Network-neuron

Memory-neuronα

1−α

f11
1w11

1

s11
1

v11
1x1

1

x2
1

β12
1

s1
3

Fig. 1 Architecture of memory neuron network

Let ui(k) be the input fed into the network at any timek and letyp(k) be the output of the network
at any timek. yp(k) is the teaching signal to the network. We are using series-parallel model for
identification[6] . Series-parallel model needs actual inputui(k) and past output of the plantyp(k − 1)

as input to the network shown in the Fig. 2. Now we have,

ŷp = F
(
u(k), u(k − 1), . . . , yp(k), . . . , ŷp(k − 1),

)
. (1)

To identify anM-input and aP -output plant, we will use a network withM + P inputs andP outputs.
This will be a case irrespective of the order of the system. We shall use the actual output of the plant
at each instant as teaching signals. Here we are using 25-inputs and a 25-output network, with hidden
nodes varying from 250 to 200 nodes.

We use 66000, 77000 time-steps for training the network with longer training sequence for more
complex plants. We train the network for 2000 iteration with zero inputs; then for two-third of the
remaining epochs the input is iid sequence uniform over [−2, 2], and for the remaining training time,
the input is single sinusoid signal given by sin(5k/45). After training we compare the output of the
network with that of the plant on a test signal for 1000 iteration. Our test signal consist of mixture of
sinusoid and constant inputs,

U(k) = sin



5k

25


 , k < 250

= 1.0 250≤ k ≤ 500

= −1.0 500≤ k ≤ 750 (2)

4 S. SURESH et al. / ADVANCES IN VIBRATION ENGINEERING, 2(2) 2003

= 0.3 sin



5k

25


 + 0.1 sin




5k

32


 + 0.6 sin




5k

10


 750≤ k ≤ 1000.

Consider the following example:

yp(k + 1) = f
(
y(k), y(k − 1), y(k − 2), ui(k), ui(k − 1)

)
(3)

where,

f
(
x1, x2, x3, x4, x5

) = x1x2x3x5
(
x3 − 1

) + x4(
1 + x2

3 + x2
2

) .

The output of the plant depends on the three previous outputs and two past inputs. Though the functionF

has five arguments, we needu(k+1) andyp(k) to getyp(k+1). The test inputs are given in equation (3).
We need the past three outputs and the present and past input as an argument in the function.

3 Message Passing Interface Library

Message passing is a programming paradigm used widely on parallel computer, especially scalable
parallel computer with distributed memory, and on network workstations. MPI defines both the syntax

Fig. 2 Series parallel identification model with memory neuron network. Current input into the plant and the most
recent output of the plant are fed into the network. The errore(k) is used for learning the network parameters.

PARALLEL IMPLEMENTATION OF MEMORY NEURON NETWORK FOR IDENTIFICATION OF DYNAMICAL SYSTEM 5

and the semantics of a standard core of library routines, which is not only useful for a wide range of
users but is also efficiently implementable on a wide range of computers.

MPI is a library, not a language. It specifies the names, calling sequence and result of the functions
to be called from C or FORTRAN program. Portable parallel programming with MPI is designed to
accelerate the development of parallel application programs. The message-passing model fits well on
separate processors connected by a fast or slow communication networks. MPI does not depend on the
underlying hardware that supports it. The major goal of MPI is high degree of portability across different
machines

Another type of compatibility offered by MPI is the ability to run transparently on heterogeneous
environment, that is, a collection of processors with distinct architectures. The MPI implementation will
convert the data automatically and do the necessary data conversion and utilize the correct communication
protocol[2] . The MPI is designed to encourage overlap of communication and computation so as to take
advantage of intelligent communication agents and to hide communication latencies.

The basic communication mechanism of MPI is the transmission of data between a pair of processes,
one side sending, the other receiving. This is called point-to-point communication. For training artifi-
cial neural networks, we have to transmit the data to all the processors. If we are using point-to-point
communication, it will increase the communication overhead. We have to use collective communica-
tion. Basically, collective communications transmit data among all the processors in a group specified
by an intracommunicator object[2] . This will considerably reduce the communication overhead. There
are two types of collective communications. They are data movement operation and collective compu-
tation operation. Data movement operation is used to rearrange data among the processors. Collective
computation operation uses operations like sum, logical AND, max, min, user-defined function, etc., to
process the data and then transmit to all the processors[2] .

4 Algorithm Parallelisation

Network-slicing concept can be used to parallelise the backpropagation algorithm in IBM-SP machines.
It consists of a master processor where all the weights are initialized. Each processor will have equal
number of neurons in the hidden layer. All the processors are connected to all input and output nodes.
Each will evaluate the output in the forward step and broadcast to all other processors. Similarly, during
backward phase the error in the hidden layer are broadcast to all the other processors so as to update the
weight connection between the input and hidden layer. This will increase the communication overhead.
To avoid this we are using collective communication[2] .

Figure 3 shows a memory neuron network with six hidden nodes. For the purpose of illustration we
are using two processors. Both the processors have input nodes A and output node B. The block C is
kept in one processor and D kept in another. We need two communications between the processors for
each epoch—one for forward pass to exchange the output and the other for backward pass to exchange
the error in hidden nodes to update the weights.

5 Results and Discussion

In this paper we have suggested a parallel algorithm of memory neuron networks for identification for
nonlinear dynamical systems. MPI communication features on an IBM SP machines were evaluated in

6 S. SURESH et al. / ADVANCES IN VIBRATION ENGINEERING, 2(2) 2003

A

B

C

D

Input Nodes

Output Nodes

Hidden Nodes

Fig. 3 Parallel split up for MNN with one input and one output with two processors.

Table 1 Time (seconds) taken for training the MNN with
different number of processors

No. of processors

Number of hidden nodes One Two Three Four

250 2234 1151 811 650
240 2098 1110 771 618
230 1964 1066 743 583
220 1895 1038 717 576
210 1723 976 689 541
210 1614 930 661 513

order to implement this algorithm in an efficient way. For the testing purpose we have taken 25 inputs
and 25-output plant with varying hidden nodes similar to the equation (3) with interdependency among
the past inputs and outputs. They are trained and tested as explained in the section 2. Table 1 shows the
time taken to train the network in different processors. In general total time taken to train the neural
network with N number of processors is 1/N times that of the time taken by sequential (one) processor.
The same can be observed from the Table 1.

Next a study is done on parallel efficiency and speedup. They are defined as follows,

Parallelisation efficiency= S

MP
; (4)

PARALLEL IMPLEMENTATION OF MEMORY NEURON NETWORK FOR IDENTIFICATION OF DYNAMICAL SYSTEM 7

Speedup= S

P
; (5)

WhereM is the number of processors,P the time taken by the program to run in parallel machine, and
S the time taken by the program to run in sequential machine.

Figure 4 shows the variation of parallel efficiency with the increase in number of hidden nodes for
2, 3 and 4 processors. It shows that parallel efficiency increases with increase in network parameter.
Figure 5 show the variation of speedup with increase in number of processors for 250, 240 and 230
hidden nodes. As can be seen from figure, we can achieve linear speedup with increase in number of
processors.

We can achieve linear speedup if we increase the number of processors. But at the same time it will
reduce the parallelisation efficiency. If we increase the number of processors then communication latency
will become higher than the computation done by each processor. This will lead to reduction in speedup.
In order to avoid reduction in speedup we should use overlapped communication and computation. But
in network parallelism it is not possible to have overlapped communication and computation because
of the communication required between the processors at the same time. This shows that parallelisation
will be effective only when the computation requirement is more, i.e., when the network parameters are
high.

Fig. 4 Efficiency versus hidden nodes.

8 S. SURESH et al. / ADVANCES IN VIBRATION ENGINEERING, 2(2) 2003

Fig. 5 Speed up versus number of processors.

Conclusion

Identification of nonlinear dynamical system using memory neuron network is parallelised effectively.
Collective communication is used to implement network parallelism. This will considerably reduce the
communication overhead. We can achieve linear speedup if we increase the number of processor, and
also increase the efficiency with increase in network size.

References

[1] Danese, G., de cotto, I. and Leporati, F.,A parallel processor for neural networks,IEEE Transaction
on Neural Networks, vol. 1(2), 1999.

[2] Mars Snir, Steve otto, Steven Huss-Ledermen, David Walker and Jack Dongarra,Message Passing
Interface- The Complete Reference, MIT Press London England.

[3] Narendra, K.S. and Parthasarathy, K., Identification and control of dynamical systems using neural
network,IEEE transactions on Neural Networks, vol.1(1), pp. 4–27, 1990.

[4] Narendara, K.S. and Parthasarathy, K., Gradient method for optimization of dynamical systems
containing neural networks,IEEE Transaction on Neural Networks, vol. 2(2), pp. 252–262, 1991.

PARALLEL IMPLEMENTATION OF MEMORY NEURON NETWORK FOR IDENTIFICATION OF DYNAMICAL SYSTEM 9

[5] Pandya, Abhi S., Shen, Ercan and Hsu, Sam, Buffer allocation optimization in ATM switching
networks using ALOPEX algorithm,Neurocomputing, vol. 24, pp. 1–11, 1999.

[6] Poddar, P. and Unnikrishnan, K.P., Memory neuron networks:A prolegomenon, Tech Rep. GMR-
7493, General Motors Research Laboratories, 1991.

[7] Sastry, P.S., Santharam, P.S. and Unnikrishnan, K.P., Memory neuron networks for identification
and control of dynamical systems,IEEE Transaction on Neural Networks, vol.3(2), pp. 305–319,
1994.

[8] Sundararajan, N and Saratchandran, P.,Parallel Architecture For Artificial Neural Networks-
Paradigms And Implementation, IEEE Computer Society Press.

[9] Williams, R.J. and Zipser, D., A learning algorithm for continually running fully recurrent net-
works,Neural computation, vol.1, pp. 270–280, 1989.

[10] Witbrock, M. and.Zagha, M., Backpropagation learning on IBM GF11, inParallel Digital Imple-
mentation of Neural Networks, Przytula, and Prasanna, V.K., (eds.), ch.3, pp. 77–104, Englewood
Cliffs, NJ:PTR Prentice Hall, 1993.

