Rotor Systems: Analysis and Identification

(Errata and Answers to Selected Exercise Problems)

Errata in “Rotor Systems: Analysis and Identification, CC Press, Boca Raton, USA” Authored Rajiv Tiwari

(please report if you find more: rtiwari@iitg.ac.in)

 

S.N.

Page

Specific location

Correction/inclusion

 

Preface

xvii

List of Ph D students helped

Rajeswara Rao Bhyri

 

 

 

 

 

Ch02

22

Section 2.1

p” is missing In I = p d4/64

 

 

31

Example 2.1

of 98.1 112.5 kN/m. should be “88.45-112.50 kN/m”

 

 

 

40

 

Herein, the moment is taken with respect to the C, the moment can also be taken about G. In that case moment equation will contain x and y along with theta. But since Eqns. (a) and (b) contain theta we need to solve all three equations simultaneously. In chapter 11 the moment was taken about the G to get EOM in theta direction (page 671, Eqn. c).

 

 

49

2.5

The angle, f, represents the phase between the force and the radial response.

 

Add “The initial phase of the unbalance is considered as zero.”

 

 

69

Exercise 2.1

Show that it occurs always at frequency ratio of less than one.

 

76

Exercise 2.25xx

For a cantilever shaft with a thin disc at the free end, if the transverse and torsional natural frequencies are the same, then the ratio of the length of the shaft to the diameter of the disc would be (take Poisson’s ratio as 1/3 for the shaft material)

 

(a)     (b)       (c)     (d)

 

 

 

 

 

 

 

Ch04

162

Equation 4.52 

 

 

 

 

 

178-179

Exercise 4.8

All jz should be jx.

 

 

 

182

Exercise 4.20

 

 

 

 

 

 

Ch05

204

Eqn. 5.5

Only negative sign is valid for negative m .

 

 

216

Fig. 5.29

In the figure  “replace Ip with Id

 

 

 

240

Exercise 5.4

 

 

‘+” is missing after

 

 

 

240

Exercise 5.5

Change initial tilt j to j0.

 

 

240

Exercise 5.6

“supported freely” to be replaced by “simply supported”

Delete whole last line “For the cylinder .”

 

 

 

241

Exercise 5.7

A shaft of total length l on the end bearings carries two discs a disc at the quarter-length points. The discs have disc has mass …

 

 to be modified as

 

 

 

241

Exercise 5.8

kt = 2000 N-m/ rad

 

 

241

Exercise 5.8

Exercise 5.8 Obtain the forward and backward transverse critical speeds of the rotor system shown in Figure 5.48. Take the shaft as rigid. It is assumed that it oscillates (processes) about its centre of gravity while whirling (i.e., pure tilting without translational motion). The effective torsional stiffness of the bearings is N-m/rad, the polar and diametral mass moment of inertia of the rotor are 0.03 kg-m2 and 0.2 kg-m2, respectively. Consider the gyroscopic effects.

 

Delete last two but one lines? Not required?

 

 

 

241

Exercise 5.8

Delete the following sentence :Bearing support distance is 1 m and center of gravity of the rotor is 30 cm from the right support bearing.”

 

 

242

Exercise 5.13

1. Add at the end of first line “of a cantilever rotor system”

 

 

2.  to be modified as

 

 

 

 

242

Exercise 5.14

“The shaft modulus of rigidity of the shaft …”

 

 

 

243

Exercise 5.18

Fig. 5.51: change shaft lengths a and b instead of l and 2l.

 

 

 

244

Exercise 5.23

In seventh line “Ip = 0.1 kg-m2

 

 

 

244

Exercise 5.24

Remove damping matrix:

 

 

 

245

Exercise 5.29

“Obtain the forward and backward transverse critical speeds corresponding …”

 

 

 

246

Exercise 5.30

Change: kb = 1 kN/...k = 10 kN/m

 

 

 

 

 

247

Exercise 5.33

 Delete as indicated

 

 

 

249

Exercise 5.35xviii

Then first forward natural frequency as compared to without gyroscopic effect would

 

 

 

 

 

 

 

Ch06

293

Eqn. (i)

Correct the first row second column as:

 

 

 

 

 

327

Exercise 6.10

(Shaft A and arm have opposite motion)

 

 

328

Exercise 6.11

…are kg-m2 and kg-m2, respectively.

 

 

(change is in second part )

 

 

 

329

Exercise 6.17

“cm” missing in the end “16 cm”

 

 

 

331

Exercise 6.21

Delete: IpF = 0.006 kg-m2.

 

 

 

331

Exercise 6.21

Units “kg-m2“ missing in second and third lines for Ip

 

 

 

332

Exercise 6.25

Given data (assumed) and from it we have

 

=0.1 m; = 0.3 m; = 0.1 kg-m2; = 0.02 kg-m2;

 

=0.04 kg-m2; = 0.3 kg-m2; N-m/rad;

 

N-m/rad ; and N-m/rad

 

 

 

 

 

 

 

 

Ch07

352

Eqn. (h)

 

 

 

(page322.pdf file attached)

 

 

 

360

Equation 7.99 

 

 

 

374

subscripts

 

 

 

375

 

write ‘2’ in second diagonal term instead of 1

 

 

 

 

 

 

377

Example 7.8

Eqns. (c) and (d): in extreme right vector “n” to be replaced by “2”.  Also in line below Eqn. (d).

 

 

 

 

378

Example 7.8

Make changes

      ;       

 

 

 ;

 

           

 

     .

 

 

 

 

 

378

Example 7.9

Figure 7.25 need to be replace (its diameters are dAB = 0.03 m, dCE = 0.02 m, and dDF = 0.02 m.)

 

 

Ch07xFig25_new

 

 

384

Exercise 7.9

Add “Speed of shaft A is 600 rpm and of the arm is 300 rpm with opposite sense of rotation.”

 

 

 

384

Exercise 7.10

 

 

385

Example 7.12: last line

cm, cm, cm, and cm

 

 

 

 

 

 

Ch08

400

Example 8.3

Table 8.1 shows the systematic calculation of influence coefficients for above expressions. Influence coefficients have been obtained by substituting l1 = 0.05 m and l2 =

0.075 m in above expressions.

 

 

 

Delete 3rd and 4th columns

 

 

 

 

402

Example 8.4

Line 3: H4 should be D4

 

 

408

Eqn. 8-37

[F*]

 

 

 

447

Terms missing

 

 

 

449

Figure 8.45

Free end disc D1

Ch08xFig45_new

 

 

450

Example 8.12

Update as per solution as per calculation EIl instead of EIl^3 ...

 

Hence, EIl3 =450.89 742.20 N-m3.

 

 

Update Table 8.13

 

 

 

 

452

Exercise 8.4

Add in the end “Take E = 2.1 x 1011 N/m2.

 

 

 

452

Exercise 8.7

o All disc diameter to be capital D (same for all other examples?)

 

 

o Add: For a Jeffcott rotor with an offset disc, the following influence coefficients are valid (Refer Table A.1-7 for Deflection relations in terms of z)

 

 

 

454

Exercise 8.8, Line 4

Shaft segments, of diameter 0.01 m, have the

 

Make disc diameters as D1, D2, …

 

take diameter of discs as cm, cm, and cm

 

 

454

Exercise 8.9

“The masses of discs are m1 = 5 kg, m2 = 2 kg,” The

 

diametral mass moments of inertia of the discs …

 

 

455

Exercise 8.12

The mass of the of thin discs are

 

 

456

Exercise 8.16, Line 7

…m4 = 7 kg, and m5 = 8 kg.

 

 

457

Exercise 8.17

1. Consider the rotor system shown in Figure 8.63 for obtaining the transverse natural frequency

2. A thin disc, of mass 3 kg and diametral mass moment of inertia 0.01 kg-m2, is …

 

 

 

 

 

Exercise 8.18

1. Consider the rotor system shown in Figure 8.63 for obtaining the transverse natural frequency

2. A thin disc, of mass 3 kg and diametral mass moment of inertia 0.01 kg-m2, is …

 

 

 

458

Exercise 8.21

Exercise 8.21 Obtain the natural frequencies of the rotor system shown in Figure 8.66. Assume the rotor

has free–free boundary conditions. Take the shaft material Young’s modulus as E = 2.1 × 1011 N/m2. The

transverse stiffness of each bearing is k = 200 N/mm, The mass of the rotor is 15 kg, and the polar and

diametral mass moments of inertia of the disc are 0.3 kg-m2 and 0.2 kg-m2, respectively. Neglect the shaft

mass and gyroscopic effects. Use the TMM

 

 

458

Exercise 8.23

 

ignore

 

459

Exercise 8.27

Delete from the end “and the diametrical mass moment of inertia of the disc”

 

 

 

 

 

 

 

 

462

subscript

??

 

 

 

462

 

add formula for simply supported beam with a moment at some location.

 

https://www.engineeringtoolbox.com/beams-fixed-both-ends-support-loads-deflection-d_809.html

 

 

 

 

 

 

Exercise 9.10 (cantilever two disc cases)

Try to uniformalise

 

In Exercise 9.8 Take D1D2 = 50 mm (as per figure)

 

In Exercise 8.9 Take D1D2 = 75 mm and m1 = 2 kg and m2 = 5 kg (as per Examples 8.3, 8.7 and 8.11)

 

In Example 8.11 Take left disc as D2 (in figure) m1 (5 kg) > m2 (2 kg)

 

9.2/9.10/8.2 are similar problems (in 9,10 take D1D2 = 50 mm?)

 

 

Ch09

468

Fig. 9.1

subscript

Change all and f(z, t)

 

 

492

[Nf]

NF1 is multiplication of first two terms in brackets

 

 

 

499

Eqn. (g)

 

 

 

499

Eqn. (h)

 

 

 

503

Example 9.3

following natural frequencies of the system

 

 rad/s,   and             rad/

 

 

 

527

Example 9.9 (spelling of Rayleigh’s)

For Example 9.2 obtain the Rayleigh’s damping coefficients

 

 

508

Fig. 9.20 (Example 9.5)

Mass at node 2 is 1 kg; also below Fig. 9.20 “m2 = 1 kg”

 

 

530

Example 9.10 (in the end)

which gives natural frequencies as

 

   14.24 rad/s;                               58.72 rad/s

 

 

On comparison with Example 9.2 (14.24 rad/s; 57.57 rad/s), with the same number of elements, it could be seen that not much difference in the determined fundamental natural frequency even with the condensations of some of DOFs. However, now the size of the matrix has decreased drastically from 6×6 to 2×2. For more number of elements it is expected that other higher natural frequencies estimation would be improved.

 

 

 

 

538

Exercise

(Assume the mass density, r  = 7800 kg/m3 of shaft material)

 

 

 

538

Exercise 9.2

Add in the end “The shaft is made of steel with 2.1 x 10^11 N/m^2  as Young’s modulus, E, and 7800 kg/m^2 as the mass density, ρ.

 

 

 

539

Exercise 9.8

Assume the mass density, r  = 7800 kg/m3 of shaft material

 

 

 

540

Exercise 9.10

change in fig. distance between two discs 0.75 m)

Ch09xFig40_new

 

 

 

540

Exercise 9.12

b = c = 0.7 m

 

Draw Fig. 9.42 proportionately

 

Ch09xFig42_new

 

 

542

Exercise 9.14, second line

simply supported end conditions

 

 

 

 

 

 

 

 

Ch11

 

 

613

Example 11.2

A rigid rotor of mass 5 kg

 

 

614

Table 11.2

= 5.9175×1010 ; = 3.3750×1014; = 7.4600×1012

 

Correct in 3Row 2Column as: (a­3 a2 - a4 a1)

 

= 5.9113×1010

 

= 3.3750×1014

 

 

624

Equation 11.47

 

 

633

Example 11.7

Correction in moment of area formulae (correct all numbers accordingly)

 

Solution:   The stiffness of the shaft in two principal directions are given as

 

 

N/m           

with    

 

 m4

 

and

N/m

 

 

with    

m4

 

Now, we have

 

rad/s

 

 

and

rad/s

 

 

 

Hence, the rotor will be unstable in speed range 42.47 rad/s to 47.19 rad/s due to shaft asymmetry and also in speed range of 21.23 to 23.59 rad/s due to unbalance.

 

 

 

644

Eqn. 11.114

Replace l with L

 

 

 

 

645

Between Eqn. 11.118 and to 11.119 (first term )

                       

 

 

 

which can be rearranged to

 

 

 

               

 

 

 

645

Between Eqn. 11.119 up to 11.121

Replace l with L

 

 

 

 

 

 

 

 

 

667

Equation 11.221

negative sign is giving -negative imaginary part so not a physical solution? since square of natural frequency cannot be negative?

 

 

 

671

 

Herein, the moment is taken with respect to the G, the moment can also be taken about C. In that case moment equation will contain only theta. But since Eqns. (a) and (b) contain theta we still need to solve all three equations simultaneously. In chapter 2 the moment was taken about the C to get EOM in theta direction (Eqn. 2.44), page 40).

 

 

 

675

Exercise 11.2

Shift this to Exercise of chapter 10

 

 

 

 

 

 

 

676

Exercise 11.2

Add at the end “(i) Consider only stiffness direct and cross-coupled linear coefficients. (ii) Consider both stiffness and damping direct and cross-coupled linear coefficients.”

 

 

 

 

667

Exercise 11.8viii

11.8 (viii) A rotor-bearing system has the following properties: rotor mass, m = 1 kg, equivalent bearing stiffness and damping coefficients of both bearings are

 

kxx = kyy = 10 kN/m, kxy = 10 kN/m, kyx = 1 kN/m, cxx = cyy =

 

10 kN-sec/m, cxy = 10 kN-sec/m, cyx = 0.1 kN-sec/m

 

 

 

678

Exercise 11.8xxiii

A Jeffcott rotor with an elliptical cross-section shaft (with semi-major axis a = 6 cm and semi-minor axis b = 4 cm). The second moment of areas about two principal axes are given as pab3/4 and pa3b/4. The disc mass is 20 kg, the shaft span l = 1 m and Young’s modulus E = 2.1´1011N/m2. The instability zones in the rotor system due to unbalance excitation would be within the speed range of (in rad/s)                                            

(A) 156 – 215              (B) 616.45 to 924.67              (C) 169 – 258                    (D) 136 - 289

 

 

 

678

Exercise 11.8xxvi

steam whirl stiffness = 89.44 kN/m.

 

 

 

 

 

 

 

Ch12

 

 

689

Below Eqn. 12.8

Delete as shown below:

 

 

 

 

 

 

 

Ch13

 

 

723

Example 13.4

Add in the end:

From the construction, the measurement will be in clockwise so residual unbalance angle =

 

 

From triangle OEA, let the angle OAE is f2, then we have

 

    or

 

           

 

For , the measurement will be in clockwise so

residual unbalance angle = .

 

 

 

 

 

729

Example 13.5

From end 7th line to be corrected as:

 

 

 

 

Example 13.5 update all data

We have, influence coefficients as

 

             mm/kg

a11 =  17.1542 +69.0116i   mm/kg

 

and

             mm/kg

 

 

a12 =  1.1199e+02 - 1.0444e+01i   mm/kg

 

 

It is given that machine is symmetric about the centreline, hence

 

 

Measurements, influence coefficients and correction mass are related as

 

           

 

which can be simplified as

 

 

with

             (mm/kg)2

 

delta =  -1.6901e+04 + 4.7070e+03i

 

 

which gives the balancing mass and its angular position as

                       

 

wR =   0.3270 - 0.0762i  kg

wR_mag =     0.3358 kg

wR_ang =  -13.1223 deg.

and

 

wL =   -0.2304 - 0.4165i  kg

 

wL_mag = 0.4760 kg

 

wL_ang = -118.9496 deg.

 

 

 

733

Below eqn. 13.31, replace x with c for mode shapes

For example, for simply supported boundary conditions,

 

mode shapes are (i) I - mode : , (ii) II - mode :

 

 , and (iii) nth - mode: .

 

 

 

736

Eqn. 13.51 (use m1n and m2n)

 

 

 

737

Equation 13.54

Second term has (z1):

 

 

 

756

Exercise 13.2

Last line correct as “a necessary correction mass required”

 

 

 

756

Exercise 13.5, Line 1

Add in the first line “…the influence coefficient method for Exercise 13.4.”

 

 

 

758

Exercise 13.12

Let x be the amplitude difference with unit trial

 

 

 

758

Exercise 13.13

Exercise 13.13 In the dynamic balancing of a rigid rotor by using the influence coefficient method, let the following measurement were made (i)  and  for a trial mass TR in the right plane and (ii)  and  for a trial mass TL in the left plane. Assume the measuring planes are “a” and “b”, trial mass (or balancing) planes are L and R, and αij is the influence coefficient with i = a, b and j = L, R. If WR and WL are the correction masses at the right and left planes, then prove that

 

 

   and

 

 

 

 

 

758

Exercise 13.15

Exercise 13.15 In a simply supported rotor for flexible rotor balancing

 

 

 

759

Exercise 13.16, Line 3

Delete as suggested the repeated sentence:

Suggest whether dynamic balancing will be required. Suggest whether the dynamic balancing will be required?

 

 

Ch14

 

 

 

 

 

784

Example 14.2

The horizontal load produces displacement of 10.3 μm and 3.3 μm in the horizontal and vertical directions respectively,

 

 

 

784

Example 14.3 (update numbers)

As per solution

 

 

817

Exercise 14.6 (in end add)

Take rotor speed equal to 2000 rpm

 

 

817

Exercise 14.7

by the method of unbalance excitation (all measurement are done at 100 Hz speed), the following t

 

 

 

817

Exercise 14.11(i)

C) taking measurements with different unbalance levels at a constant rotor speed

 

 

 

818

Exercise 14.11(vii)

(C) when two orbits are elliptical and identical in shape (but not in size) and orientation.

 

 

 

 

 

 

 

Ch15

825

Para 2

Line 6: Amplitudes and phases of displacements, velocities

Line 7: For acoustics three quantities are important: level, intensity, and power.

 

 

Line 9: machine these parameters (vibrations and acoustics) and their analyses

 

 

 

826

Para 2

For example, an instrument (for example, in thermometer (or voltmeter)) with a 30 cm (or 360°) scale would...

 

 

 

827

Example 15.1

1. actual value of 1050–1000 = 50 rpm,

 

2. Hence, the tachometer could be used confidently to measure speed within ± (1040 × 0.096) = ±9.62 = ±10 rpm.

 

3. and absolute random error from mean of 0, 10, 10, 10 and 10 rpm

 

 

 

828

Frequency range:

the accelerometer of n the order of 40 kHz.

 

 

 

830

Below Eqn. (15.7),Line 2

“Equation (15.6)”

 

 

833

Above Eqn. 15.8

The first natural frequency of a cantilever continuous beam is expressed as (refer Table 9.2)

 

 

 

833

Example 15.3, last para

compared to the uncertainty. In one parameter, then

 

should be

 

compared to the uncertainty in one parameter, then

 

 

 

834

Example 15.4

For L = 60 mm, from Equation 15.8, we have the lower upper bound of the natural frequency as

 

 

Similarly, for L = 200 mm, we have the upper lower bound of the natural frequency

 

 

 

 

841

-k(y2-y1)

Eqn. + sign to be replaced by – as

 

 

 

 

856

Example 15.11 last lines

The output voltage is therefore E = {(3.557

/10)×10−3}(10−4 )= 3.557 ×10^−11 V

 

should be

 

The output voltage is therefore E = {(3.557 /10)×10−3}(10−4 )= 3.557 ×10^−8 V

 

 

and 

 

reduces to approximately 2.0 × 10^5 times

 

should be

 

reduces to approximately 178 times

 

 

 

857

Exercise 15.6

Exercise 15.6: A small cantilever vibrometer is calibrated to obtain its characteristics by putting it on an engine, which is rotating at 500 ± 3.0 rpm. The measured length for resonance conditions is 7.2 cm ± 0.15 mm. Obtain the frequency that the measurement will show when L = 12 cm ± 0.4 mm. Also obtain the uncertainty in the measurement of frequency at this length. Obtain the phase angle for above conditions.

 

 

 

 

 

858

Exercise 15.8

z = 0.72

 

 

858

Exercise 15.8

Use Y instead of x?

 

 

i.e., .

 

 

 

858

Exercise 15.9

Use Y instead of x?

 

that

 

 

858

Exercise 15.9

changes in last line "1-" to be deleted:

such that

 

 

 

858

Exercise 15.10

seismic accelerometer is equal to the period of the maximum allowable

 

 

 

858

Exercise 15.13

 rad/s,

 

 

Ch16

887

Last para

Change last but one line "to a number of multiplications of the order of" to “to a number of multiplications to"

 

 

 

888

First para

Fourth line: “which is only 2pN/N2 = 2p/N of ...” to be changed to “so their ratio is only 2pN/N2 = 2p/N of ...”

 

 

 

924

Exercise 16.6xii

Windowing operations are performed on vibration signals to

 

(A) to increase amplitude of main frequencies                             

(B) reduce the leakage error

(C) to decrease amplitude of spurious frequencies  

(D) all other three options

 

 

 

924

Exercise 16.6xvi

D. Bisymmetrical

 

 

 

 

 

 

Ch17

 

 

 

 

 

 

978

Exercise 17.3 viii

(D) 600 Hz

 

Should be

 

(D) 30 Hz

 

 

 

 

928

section 17.1 1st para second line

and it is inherently inexistent.

should be 

and it is inherently in existent.

 

 

 

935

 

bending moment with eight DOFs per node.

 

Should be

 

bending moment with eight DOFs per element.

 

 

 

 

 

955

section 17.8 second paragraph last but 2 line

at tooth engagement, unbalance, ben shaft, worn/defective bearings, improper backlash, and poor

 

should be

 

bent shaft

 

 

 

969

 

o TThe unbalanced sinusoidal voltage has

 

should be

 

The unbalanced sinusoidal voltage has

 

o polyphaseinduction
motor a

 

should be

 

polyphase induction
motor a

 

 

 

 

970

Figure 17.33

Ch17xFig33_new

 

 

 

 

972

Table 17.7

Short circuit freq.

 

o for s = 0.0375 

 

and s = 0.0375 in Harmonics index, k may be deleted

 

 

o 81.5 Hz and 1.5 Hz (when i = 3 and n = 1),

 

should be

81.5 Hz and 158.5 Hz (when i = 3 and n = 1),

 

 

 

 

 

 

 

 

 

972

Table 17.7

o Bearing failure

76.60 Hz and 159.6

 

should be

Bearing failure... (refer Figure 17.39)

79.60 Hz and 159.6

 

 

o Bearing outer race fault characteristic
vibration frequencies, fv, (Hz)

should be

Bearing outer race fault characteristic
vibration frequencies, fv, (Hz) (refer Figure 17.38)

 

Short circuit frequency, fst (Hz)

should be

Short circuit frequency, fst (Hz) (refer Figure 17.37)

 

 

o Broken bar frequency sidebands, fb
(Hz) 

 

should be

 

Broken bar frequency sidebands, fb
(Hz)
 (refer Figure 17.36)

 

 

 

 

 

972 and 974 (text)

Table 17.7

o Bearing fault case I

calculated from f0 = 0.4nfr at 2341 rpm (39.02 Hz) of

 

should be

calculated from f0 = 0.4nfr at 2242.5 rpm (37.375 Hz) of

 

 

 

o also in Table 17.7

fo = 0.4Zfr (Refer Table 17.2) at fr
= 39.02 Hz (2341 rpm), Z = 8

 

should be

 

fo = 0.4Zfr (Refer Table 17.2) at fr
=
 37.375 Hz (2242.5 rpm), Z = 8

 

 

also 0.4 × 8 × 39.02 = 119.60 Hz

 

should be

 

0.4 × 8 × 37.375 = 119.60 Hz

 

 

 

 

 

973

 

of pole pairs, i = 1, 3, 5, . . . , and n = 1, 2, . . ., (Gandhi et al., 2011).

 

Change to:

of pole pairs, the supply current harmonics, i = 1, 3, 5, . . . , and the side band harmonics, n = 1, 2, . . ., (Gandhi et al., 2011).

 

 

 

 

975

Figure 17.38

FIGURE 17.38 y-axis is “Magnitude” (not “Stator current’)

Ch17xFig38

 

 

 

 

 

 

 

 

 

 

 

 

Ch18

991

Above Figure 18.1

The angle is measured from the pole pair center line, Where a is the half of the angle subtend between a pair-pole, i.e. from the centre line of a pair-pole to one of the pole.

 

 

991

Table 18.1

3-pole pairs at 45o: 0.9659

4-pole pairs at 30o and also at 60o: 1.366

 

 

 

992

Eqn. (18.1)

  =    = 0.707

 

 

 

1008

Fig. 18.14

Check for positive sign of extreme left for sensor gain?

 

 

 

1022

Eqn. (18.77)

It should be corrected  as:

 

 

 

1017

Example 18.1

1. Table 18.4

Area of core of pole-shoe magnet,      2.0´10-4

 

2. In Eqn. (b):

 

3. Eqn. (c):

ki =29.0245 N/A

 

4. Eqn. (d):

kx=7.2561´104 N/m

 

5. Below eqn. (a) add:

Where a is the half of the angle subtend between a pair-pole, i.e. from the centre line of a pair-pole to one of the pole.

 

 

 

 

 

 

 

 

 

1050

Exercise 18.1

Replace: amplifier gain “”by”

 

 

 

1050

Exercise 18.3(iii)

Magnetic bearings are

 

 

1052

Exercise 18.3(xix)

Corerd as:

 

 

 

 

 

 

 

 

 

 

 

Answers to Selected Problems

(please report if you find more solutions or errors: rtiwari@iitg.ac.in)

 

Chapter 2

Examples

2.1       8.8454´104 to 1.1247´105 N/m

2.2       156250 N/m

2.3       39240 N/m and 140.07 rad/s

2.4

 

2.5       2317.1 rad/s

2.6       29.45 and 289.23 rad/s

2.7       (i)

(ii)

(iii)

2.8       2.907.3 rad/s

 

2.9       191.87 rad/s

 

 

Exercises

 

2.1       ;                   

           

2.2       ,

 

,                 ;

 

for :  is a complex quantity. The maximum feasible value of damping ratio for under-damped system will remain the same .

 

2.3        and

 

2.4        and

 

2.5  and(a)  

 

(b)  (c)

 

2.6  (pure translational motion);   (pure rotational motion)

 

2.7 NA

 

2.8 NA

 

2.9 and

 

2.10

 

2.11

 

2.12

 

2.13

 

2.14

 

2.15  and

 

2.16  and

 

2.17 (a) coupled system

 

       (b) coupled system  and

 

2.18  and

 

2.19 ;           

 

;                      

 

2.20  ,  .

 

2.21

 

2.22

 

2.23 M = Id w2 a

 

2.24     83.0 rad/s

 

2.25

(i) B (ii) C (iii) C (iv) C (v) D (vi) B (vii) C (viii) B (ix) D (x) B (xi) D (xii) B (xiii) D (xiv) B (xv) C (xvi) A (xvii) C (xviii) C (xix) D (xx) A (xxi) H (xxii) B (xxiii) B (xxiv) C (xxv) B (xxvi) C (xxvii) A (xxviii) D (xxix) A (xxx) C (xxxi) B]

 

 

Chapter 4

 Examples

 

 4.1      90.34 and 154.18 rad/s

 4.2      (a) 11.81 and 66.94 rad/s (b) 11.81, 16.70, 66.94 and 94.66 rad/s

 4.3      648.07, 748.33, 3240.40 and 3741.70 rad/s

 4.4      7587.8 and 8908.2 rad/s

4.5       89.39, 187.64, 632.11 and 1326.80 rad/s

4.6       (a) 4530.9, 5393.9, 7840.4 and 9333.8 rad/s (b) 1289.0, 4654.0 and 17856.0 rad/s

 

 Exercise

 4.1      18.48 and 76.54 rad/s

 4.2      90.34 and 154.18 rad/s

 4.3      46.31 and 60.46 rad/s

 4.4      46.31 and 60.46 rad/s

 4.5     

 4.6      Refer Section 18.8 and Example 18.3

Equation of motion of the two offset discs rigid rotor-flexible bearings (can be written as

 

                                                                                         

 

where the mass matrix M and the gyroscopic matrix G are

 

          ;     

;    ;   

 

 

The stiffness and damping matrices of bearings are

 

 

The unbalance force vector is

 

 

 

The displacement vector is

 

 

 

 4.7      Refer Chapter 3 and Exercise 4.6

           

Figure 1. (a) Displacement amplitude verses rotor spin speeds at bearing-1 (b) Displacement amplitude verses rotor spin speeds at bearing-2 (c) Displacement phase verses rotor spin speeds at bearing-1 (b) Displacement phase verses rotor spin speeds at bearing-2.

 

 

 4.8      (i)

(ii)

(iii)

(iv)

(v)

 

 

4.9       153.6 and 2091.3 rad/s

4.10     5146.7 and 4383.8 rad/s

4.11     7658.3 and 8843.8 rad/s

 4.12   

 4.13

 

           

 4.14

           

           

           

 4.15

Final

 

4.16     14.1375 and 190.7494 rad/s

 

 4.17    -

 4.18    -

4.19     20.0 and 3170.9 rad/s

 4.20

 4.21

 

 4.22

 (i) D               (ii) A               (iii) D              (iv) C               (v) D               (vi) D              (vii) A

 (viii) B           (ix) C               (x) D                (xi) A              (xii) D            (xiii) C            (xiv) D   (xv) A                       (xvi) A            (xvii) A           (xviii) D            (xix) A            (xx) A             (xxi) B

 (xxii) B          (xxiii) A          (xxiv) E           (xxv) A

 Chapter 5

 

Examples

 5.1      196.61 rad/s (point mass), 197.8628 rad/s (thin disc) and 393.2242 rad/s (very large disc)

 

 5.2       (i) 842.81 rad/s (ii) 784.61 rad/s (iii) 23014.0 rad/s and (iv) 4.092.6 rad/s

 5.3      Backward whirl natural frequency = 126.67 rad/s; Forward whirl natural frequency = 187.67 rad/s; Backward critical speed = 149.88 rad/s and Forward critical speed = 158.8794 rad/s.

 

 5.4      Case I: without gyroscopic effect 29.455 and 289.23 rad/s

            Case II: with gyroscopic effect 29.87 rad/s (F1), 29.03 rad/s (B1) and 169.41 rad/s (B2)

 

 5.5      Case I: without gyroscopic effect 12983.0 rad/s and 6.8760.0 rad/s

Case II: with gyroscopic effect 14934.0 rad/s (F1), 11480.0 rad/s (B1)

and 44898.0 rad/s (B2)

 

 5.6      Case I: without gyroscopic effect 90.34 rad/s

            Case II: with gyroscopic effect 187.67 rad/s (F) and 126.67 rad/s (B)

                         Critical speeds 158.88 rad/s (F) and 149.88 rad/s (B)

 

Exercises

 5.1      Case I: without gyroscopic effect 303.45 and 1255.20 rad/s

            Case II: with gyroscopic effect 413.40 rad/s (F1), 241.78 rad/s (B1) and 909.56 rad/s (B2)

 

 5.2       Case I: without gyroscopic effect 25.47 and 242.97 rad/s

            Case II: with gyroscopic effect 27.01 rad/s (F1), 24.11 rad/s (B1) and 148.17 rad/s (B2)

 5.3       Case I: without gyroscopic effect 26.82 and 122.26 rad/s

            Case II: with gyroscopic effect 33.33 rad/s (F1), 22.50 rad/s (B1) and 84.16 rad/s (B2)

 5.4       Refer Chapter 12

 

 5.5      

 

 5.6        Case I: without gyroscopic effect 70.66 and 147.37 rad/s

             Case II: with gyroscopic effect 84.76 rad/s (F1), 54.43 rad/s (B1) and 110.47 rad/s (B2)

 5.7                    -

 5.8      108.47 rad/s (F) and 93.25 rad/s (B)

 5.9                    -

 5.10     Refer Case II in Page 218

 5.11     (i) 66.75 rad/s (ii) 66.47 rad/s (iii) 66.42 rad/s (iv) 66.54 rad/s

 

 5.12      (i) (ii) - (iii)

 

 5.13                 

 

 5.14                 

 

 5.15        1054.1 rad/s (F) and 953.46 rad/s (B)

 5.16                  -

 5.17                  -

 5.18        Case I: without gyroscopic effect 25.47 and 242.97 rad/s

               Case II: with gyroscopic effect 27.01 rad/s (F1), 24.11 rad/s (B1) and 148.17 rad/s (B2)

 5.19        With gyroscopic effect 45.28 rad/s (F1), 41.45 rad/s (B1), 379.45 rad/s (F2) and 185.37 rad/s (B2)

 5.20         Refer Equation (5.43)

 5.21                  -

 5.22         d = 0.03374 m.

 5.23        Natural whirl frequencies 32.50 rad/s (F) and 20.00 rad/s (B)

                 Critical speeds 27.26 rad/s (F) and 24.04 rad/s (B)

 

 5.24         (refer Chapter 12)

 5.25         d = 0.03615 m

 5.26         3.9639´105 N/m

 5.27         Case I: without gyroscopic effect 191.45 and 428.09  rad/s

                Case II: with gyroscopic effect 191.45 rad/s (F1), 191.45 rad/s (B1) and 247.16 rad/s (B2)

 5.28

 (i) B                (ii) D              (iii) A             (iv) B               (v) E                (vi) A

            (vii) B             (viii) A            (ix) B               (x) B                (xi) D              (xii) B

(xiii) C             (xiv) D            (xv) D             (xvi) A            (xvii) B            (xviii) A

(xix) A             (xx) C            (xxi) A            (xxii) B            (xxiii) A          (xxiv) B

(xxv) B            (xxvi) C          (xxvii) D         (xxviii) D        (xxix) C           (xxx) A

 (xxxi) C          (xxxii) A         (xxxiii) B        (xxxiv) A        (xxxv) B          (xxxvi) E

              (xxxv) C

           

 

Chapter 6

 

Examples

 6.1      22.3 Hz (Torsional), 9.9 Hz (Transverse)

 6.2      0.00 and 257.43 rad/s

 6.3      0.00 and 171.81 rad/s

           

 6.4      0.00, 611.43 and 2325.23 rad/s

 

 6.5  0.0, 611.4 and 2325.2 rad/s (same as Example 6.4)

 

6.6  0.00 and 9341.65 rad/s

 

 6.7      233.88 rad/s

 

 

 6.8                 with    

 

 

 6.9      54.18 and 187.15 rad/s

 

 6.10    0.00, 1373.75, 2453.40 and 3756.30 rad/s

 

 6.11    0.00 and 142.22 rad/s

 

 6.12    0.00, 142.12 and 382.78 rad/s

 

 6.13    0.00, 924.39 and 1020.60 rad/s

 

 6.14    0.00, 1610.31 and 4754.32 rad/s

 

Exercises

 

 6.1      rad/s  

 

 

 6.2      rad/s                        

 

 6.3      rad/s      andrad/s

 6.4      224.41, 1000.77 and 1706.11 rad/s

 

 6.5      0.00, 320.77, 2323.41 and2704.91 rad/s

 6.6      46.03 rad/s

 

 

 6.7      (for assumed value: 0.00 and 76.38 rad/s)

 

 

 

 6.8      0.00, 1273.41 and 12180.45 rad/s

 6.9      0.00, 166.63 and 1994.67 rad/s

 6.10    0.00, 146.16 and 6804.64 rad/s (Shaft A and arm have opposite motion)

 

 6.11    0.00 and 97.49 rad/s

 6.12    0.0334 m

 6.13    3445.00 kg-m2

 6.14    1008.90 and 1007.20  rad/s   

 6.15    441.65, 1323.95, 2259.90 and 5038.25 rad/s

 6.16    491.19, 1150.85, 1709.51, 2346.71 and 5038.29 rad/s

 6.17    0.00, 980.32, 1764.64, 2505.27 and 3756.59 rad/s

 6.18    113.94 rad/s

 6.19    478.74 and 918.98 rad/s

 6.20    0.00, 469.00, 493.44, 1500.26, 1511.84, 2117.80 and 3936.12 rad/s

 6.21    0.00, 302.68, 863.56, 1546.88, 1647.83, 2159.03, 2560.42, 3087.03, 3585.87, 4423.81, 5419.79, 6072.29 and 7149.01 rad/s

 6.22    0.00, 202.28, 458.50 and 6336.98 rad/s         

 6.23    0.00 and 269.99 rad/s

 6.24    0.00, 2108.19 and 2236.074219 rad/s

 

 6.25    0.00, 188.13, 749.91 and 1055.81 rad/s

 6.26    264.22 and 457.65 rad/s

 

 6.27    364.054565 and 514.851685 rad/s

 6.28    364.054565 and 514.851685 rad/s                 

 6.29    202.72 and 782.02 rad/s

 6.30    0.00, 347.30 and 456.064 rad/s

 

 

 6.31    wnf1 = 0,                

 

           

[Answer: 6.32(i) A                 (ii) B               (iii) D              (iv) C               (v) D                (vi) D

(vii) D             (viii) B            (ix) C               (x) A               (xi) D              (xii) A

(xiii) D            (xiv) C             (xv) D             (xvi) A             (xv) C              (xvi) C

(xvii) D           (xviii) C          (xix) B             (xx) D             (xxi) A            (xxii) B

(xxiii) D          (xxiv) B           (xxv) C            (xxvi) D          (xxvii) D         (xxviii) C]

 

Chapter 7

Examples

 7.1     

 

7.2

 

7.3

with

 

7.4      

wnf1 = 0;

wnf1 = 0.0; wnf2 = 1089.7 rad/s.

7.5       wnf1 = 233.9; wnf2 = 27737.0 rad/s.

7.6       wnf1 = 0.0; wnf2 = 1116.0 rad/s; 3274.3 rad/s.

7.7       0.00; 3392.15; 7016.46; 11094.00; 15689.29; 20126.14 and 22188.01 rad/s

 

7.8       0.00; 142.13 and 382.77 rad/s

 

7.9       0.00; 928.05; 1010.95 and 3979.72 rad/s

 

 

Exercises

7.1       -

7.2

with

0.25;       3.17                   6.30

 

7.3       -

 

7.4       -

 

7.5       0.00, 70.06 and 11094.50 rad/s

 

7.6       Refer to chapter 6 answers

 

7.7       (i) fixed-free: 1681.65, 5160.66, 8987.21, 13340.22, 18028.20 and 21632.72 rad/s

 

            (ii) fixed-fixed: 3392.15, 7016.46, 11094.00, 15689.29 and 20126.14 rad/s

 

                  For both six elements.

 

7.8       (i) 320.66, 3423.80, 7032.75, 11104.74, 15696.04 and 20128.61 rad/s

 

            (ii) 641.32, 7016.46, 7081.13, 15689.29 and 15716.23 rad/s

 

             For both six elements

 

7.9       0.00, 158.95 and 5824.80 rad/s (epicylic gear ratio 2/7)

 

            Similar as Exercise 6.10 but take gear ratio of epicylic gear train for speeds refer

            above errata. “Speed of shaft A is 600 rpm and of the arm is 300 rpm with opposite

            sense of rotation.”

 

 

7.10     316.08, 506.949 and 22195.971 rad/s

 

7.11     wnf1 = 360.0 rad/s;       wnf2 = 13797.5 rad/s;

 

7.12     0.00, 1372.06, 2451.10, 3751.06, 36994.88 and 37059.86 rad/s

 

7.13     46.03 and 12314.83 rad/s

 

7.14   wnf1 = 393.8 rad/s (with hole away from centre); wnf2 = 396.1 rad/s (with hole at centre line).

 

7.15(a) C

 

 

Chapter 8

Examples (without shaft mass unless otherwise stated)

 

Example 8.1    wnf1 =  29.4 rad/s; wnf2 =  289.2 rad/s.

Example 8.2    wnf1 =  2979.1 rad/s.

Example 8.3    wnf1 =  266.6 rad/s; wnf2 =  1303.7 rad/s.

Example 8.4    wnf1 =  140.4 rad/s; wnf2 =  908.5 rad/s; wnf3 =  3209.3 rad/s; wnf4 =  7436.8 rad/s.

Example 8.5    wnf1 =  196.3 rad/s; wnf2 =  6063.7 rad/s.

Example 8.6    wnf1 =  29.5 rad/s; wnf2 =  289.2 rad/s.

Example 8.7    wnf1 =  168.4 rad/s; wnf2 =  442.5 rad/s; wnf3 =  1215.8 rad/s; wnf4 =  1826.8 rad/s.

Example 8.8    wnf1 =  214.6 rad/s; wnf2 =  1076.6 rad/s; wnf3 =  2469.7 rad/s; wnf4 =  3846.5 rad/s.

 

Example 8.9    wnf1 = 25.5 rad/s; wnf2 =  243.0 rad/s.

Example 8.10 -

Example 8.11  wnf1 = 261.2 rad/s.

Example 8.12    wnf1 = 211.5 rad/s

Example 8.13  wnf1 = 92.1 rad/s

 

 

Exercises (without shaft mass unless otherwise stated)

 

Exercise 8.1    wnf1 = 84.6 rad/s; wnf2 =   333.8 rad/s.

Exercise 8.2    wnf1 = 4967.1 rad/s; wnf2 =   30249.1 rad/s.

Exercise 8.3    wnf1 =  4132.2 rad/s; wnf2 =  19042.2 rad/s; wnf3 = 40672.5 rad/s; wnf4 =  55845.1 rad/s.

Exercise 8.4    wnf1 =  25.5 rad/s; wnf2 =  243.0 rad/s.

Exercise 8.5    Part I: wnf1 =  28.0 rad/s; wnf2 =  245.5 rad/s.

Part II: wnf1 =  24.2 rad/s; wnf2 =  175.6 rad/s.

Exercise 8.6    Part I: wnf1 =  389.3 rad/s; wnf2 =  1269.1 rad/s.

                        Part II: wnf1 =  200.1 rad/s; wnf2 =  489.4 rad/s; wnf3 = 781.9 rad/s; wnf4 =  1337.9 rad/s.

 

Exercise 8.7    wnf1 =  158.2 rad/s; wnf2 =  749.7 rad/s; wnf3 = 1709.2 rad/s; wnf4 =  2679.9 rad/s. wnf5 =  3818.8 rad/s; wnf6 =  6207.0 rad/s; wnf7 = 7540.1 rad/s; wnf8 =  9172.1 rad/s.

Exercise 8.8    wnf1 =  1495.7 rad/s; wnf2 =  3632.7 rad/s; wnf3 = 4310.8 rad/s; wnf4 =  5925.5 rad/s, wnf5 =  8463.0 rad/s; wnf6 =  9564.4 rad/s; wnf7 = 174200.7 rad/s; wnf8 =  349429.1 rad/s.

Exercise 8.9    wnf1 =  60.4 rad/s; wnf2 =  135.6 rad/s; wnf3 = 991.7 rad/s; wnf4 =   1765.1 rad/s.

Exercise 8.10  Refer Example 12.1

Exercise 8.11  wnf1 =  0 rad/s; wnf2 =  0 rad/s; wnf3 = 319.6 rad/s; wnf4 =   760.7 rad/s.

                            (Results are without shaft inertia and by FEM/TMM)

 

                         wnf1 =  0 rad/s; wnf2 =  0 rad/s; wnf3 = 225.23 rad/s; wnf4 =   577.07 rad/s.

                            (Results are with shaft inertia and by FEM)

 

Exercise 8.12  wnf1 =  953.7 rad/s; wnf2 =  2143.1 rad/s; wnf3 = 2565.5 rad/s; wnf4 =   3530.6 rad/s.

Exercise 8.13  wnf1 =  45.0 rad/s.

Exercise 8.14  wnf1 =  166.4 rad/s; wnf2 =  455.4 rad/s.

Exercise 8.15  wnf1 =  162.6 rad/s; wnf2 =  446.1 rad/s; wnf3 = 1309.2 rad/s; wnf4 =   2006.3 rad/s; wnf5 =   17819.3 rad/s; wnf6 =   17906.9 rad/s.

Exercise 8.16  wnf1 =  192.3 rad/s; wnf2 =  979.9 rad/s; wnf3 = 2151.9 rad/s; wnf4 =   3334.2 rad/s, wnf5 =   5062.5 rad/s; wnf6 =   5451.5 rad/s; wnf7 =  7806.6 rad/s; wnf8 =   9268.9 rad/s.

Exercise 8.17  wnf1 =  916.5 rad/s; wnf2 =  5316.9 rad/s; wnf3 = 9030.2 rad/s.

Exercise 8.18  wnf1 =  1116.0 rad/s; wnf2 =  8216.3 rad/s.

Exercise 8.19   142.7 rad/s; wnf2 =  9129.7 rad/s.

Exercise 8.20  wnf1 =  389.3 rad/s; wnf2 =  1269.1 rad/s.

Exercise 8.21  wnf1 =  0.0 rad/s; wnf2 =  0.0 rad/s; wnf3 = 245.2 rad/s; wnf4 =   1456.4 rad/s.

                        (results are with shaft inertia and by FEM; also note the changes in the questions)

 

Exercise 8.22  -

Exercise 8.23  wnf1 =  18074.4 rad/s; wnf2 =  71720.4 rad/s. (without shaft mass)

Exercise 8.24  wnf1 =  1156.7 rad/s; wnf2 =  13043.6 rad/s.

Exercise 8.25  wnf1 =  140.7 rad/s; wnf2 =  212.7 rad/s.

Exercise 8.26  wnf1 =  139.6 rad/s; wnf2 =  1050.7 rad/s.

Exercise 8.27  wnf1 =  185.4 rad/s; wnf2 =  321.1 rad/s.

Exercise 8.28  wnf1 =  0.0 rad/s; wnf2 =  0.0 rad/s; wnf3 = 69.5 rad/s

Exercise 8.29  Part I: wnf1 =  0.0 rad/s; wnf2 =  0.0 rad/s; wnf3 = 306.1 rad/s; wnf4 =   1331.7 rad/s

Part II: wnf1 =  0.0 rad/s; wnf2 =  0.0 rad/s; wnf3 = 637.1 rad/s; wnf4 =   1515.9 rad/s.

Exercise 8.30  wnf1 =  631.8 rad/s; wnf2 =  2039.0 rad/s.

Exercise 8.31

(i) A                (ii) B               (iii) B              (iv) A              (v) B   

(vi) A              (vii) B             (viii) C            (ix) A              (x) B   

            (xi) D              (xii) C

 

 

 

 

Chapter 9

Examples (with shaft mass unless otherwise stated)

 

Example 9.1    

 

 

Example 9.2

Convergence study of natural frequencies (rad/sec)

 

Example 9.3     29.45 and 289.23 rad/s

 

 

 

Example 9.4     25.29, 234.87, 444.89 and 1667.94 rad/s

 

Example 9.5     1662.46, 3723.15, 4996.45, 5316.06, 6480.34, 9108.79, 174201.43 and

349418.31 rad/s

 

Example 9.6     116.17 , 438.40, 861.50, 1209.45, 1542.66, 2007.03, 6089.19, 7393.86

 

            9301.39, 11637.67, 14839.49, 19807.60, 28112.42 and 29791.43 rad/s

 

Example 9.7     9.44, 46.16, 142.10 and 228.63 rad/s

 

 

 

 

Example 9.8     188.04, 239.62, 626.94, 791.67, 1321.47, 1652.78, 2210.31, 2641.42, 3115.19

 

3715.83, 4459.31, 5131.39, 7836.48, 8626.08, 9496.62, 10269.09, 11625.70

 

12999.24, 14284.97, 16518.14, 17894.79, 21018.27, 21796.76, 25053.46

 

29718.75, 30803.92, 34300.90 and 37076.63 rad/s

 

 

Example 9.9     Rayleigh coefficients a0 and a1 are 0.1897 and 0.0005

Damping matrix is

c =

0.6229             0.2959             -0.5648            0.2863

0.2959             0.1943             -0.2863            0.0958

-0.5648            -0.2863            0.6229             -0.2959

0.2863             0.0958             -0.2959            0.1943

Example 9.10   14.24 and 58.72 rad/s (with static condensation)

            14.24, 57.57, 142.10, 264.22, 472.77 and 651.18 rad/s (without condensation)

 

Example 9.11   Natural frequencies before static condensation

wnf =

1.0e+05 *

Columns 1 through 12

0.0012, 0.0044, 0.0086, 0.0121, 0.0154, 0.0200, 0.0546, 0.0647, 0.0784, 0.0920

0.1039, 0.1160 rad/s

Columns 13 through 24

0.1278, 0.2336, 0.2551, 0.2852, 0.3190, 0.3543, 0.3915, 0.4266, 0.5911, 0.6504

0.7287, 0.8182 rad/s

Columns 25 through 28

0.9129, 0.9971, 1.2194, 1.2201 rad/s

 

Natural frequencies after static condensation

wnfs =

1.0e+04 *

Columns 1 through 12

0.0116, 0.0438, 0.0861, 0.1207, 0.1540, 0.2005, 0.5465, 0.6496, 0.7905, 0.9293

1.0456, 1.1622 rad/s

Columns 13 through 17

1.2800, 2.7647, 3.2783, 4.1075, 5.1230 rad/s

 

Example 9.12   Natural frequencies before dynamic condensation

wnfd =

14.3455 and 58.0192 rad/s

 

Natural frequencies after dynamic condensation

wnf =

14.2368, 57.5735, 142.0996, 264.2237, 472.7740 and 651.1824 rad/s

 

 

 

Exercises (results shows for minimum number of elements and with shaft mass unless otherwise stated)

 

Exercise 9.1     wnf1 = 27.8 rad/s; wnf2 = 241.2 rad/s; wnf3 = 966.4 rad/s;

Exercise 9.2     wnf1 = 437.4 rad/s; wnf2 = 2699.3 rad/s; wnf3 = 9927.9 rad/s; wnf4 =  25526.0 rad/s.

Exercise 9.3     wnf1 = 28.4 rad/s; wnf2 = 736.4 rad/s; wnf3 = 2675.7 rad/s; wnf4 =  10691.8 rad/s.

Exercise 9.4     wnf1 = 27.8 rad/s; wnf2 = 241.2 rad/s; wnf3 = 966.4 rad/s

Exercise 9.5     wnf1 = 84.4 rad/s; wnf2 = 330.6 rad/s; wnf3 = 7413.5 rad/s; wnf4 =  26629.0 rad/s.

Exercise 9.6     With shaft mass (two elements)

                           wnf1 = 436.1 rad/s; wnf2 = 2643.5 rad/s; wnf3 = 8427.8 rad/s; wnf4 =  16446.3 rad/s.

                           Without shaft mass

                           wnf1 = 738.8 rad/s; wnf2 = 5113.8 rad/s; wnf3 = 15662.4 rad/s; wnf4 = 26492.6 rad/s.

Exercise 9.7     Part I: wnf1 = 25.3 rad/s; wnf2 = 234.9 rad/s; wnf3 = 444.9 rad/s; wnf4 =  1667.9 rad/s.

Part II: wnf1 = 24.0 rad/s; wnf2 = 146.0 rad/s; wnf3 = 297.7 rad/s; wnf4 =  792.2 rad/s.

Exercise 9.8     For D1D2 = 0.75.

                           With FEM with shaft mass, natural frequencies are (3 elements)

                           wnf1 =  199.9 rad/s; wnf2 =  489.4 rad/s; wnf3 =  779.8 rad/s; wnf4 =   1334.0 rad/s.

                           With FEM without shaft mass, natural frequencies are (3 elements)

                           wnf1 =  200.1 rad/s; wnf2 =  489.4 rad/s; wnf3 =  781.9 rad/s; wnf4 =   1337.9 rad/s.  

 

Exercise 9.10   wnf1 = 3.9 rad/s;  wnf2 =  28.7 rad/s;   wnf3 = 74.0 rad/s; wnf4 =  182.0 rad/s.

Exercise 9.11   wnf1 = 916.5 rad/s;  wnf2 =  5316.9 rad/s;   wnf3 = 9030.2 rad/s.

 

Exercise 9.12   b = c = 0.7 m (number of elements 3)

                       wnf1 = 16.2 rad/s;    wnf2 =  37.7 rad/s;   wnf3 = 204.8 rad/s;  wnf4 = 248.6rad/s,

                         wnf5 = 600.8 rad/s;  wnf6 =  1020.9 rad/s. 

Exercise 9.13   1st backward 6400 rpm and 1st forward 11800 rpm,

2nd backward 12600 rpm and 2nd forward 17600 rpm.

 

 

 

Exercise 9.14   wnf1 = 167.79 rad/s;  wnf2 =  316.12 rad/s

 

Exercise 9.15   wnf1 = 59.3 rad/s;  wnf2 =  112.5 rad/s;   wnf3 = 2.187.1 rad/s;  wnf4 = 2196.7 rad/s wnf5 = 9167.9 rad/s.

Exercise 9.16    wnf1 = 89.4 Hz (562.0 rad/s)

Exercise 9.17   wnf1 = 4.4 rad/s;  wnf2 =  79.3 rad/s;   wnf3 = 106.6 rad/s;  wnf4 = 285.9 rad/s

Exercise 9.18

Exercise 9.19

Exercise 9.20   wnf1 = 5.7 rad/s;  wnf2 = 9.8 rad/s;   wnf3 = 2866.6 rad/s;  wnf4 = 8279.9 rad/s

Exercise 9.21

(i) A     (ii) C    (iii) B   (iv) A   (v) B    (vi) A   (vii) A    (viii) A    (ix) C     (x) C     (xi) C

 

 

 

 

 

Chapter 10

 

 

Examples

 

Chapter 11

Examples

 

 

Example 11.1                                 Eccentricity ratio 0.2

Example 11.2                                             Stable

            Determinants

D1 = 7.4600e+12, D2 = 4.4043e+23, D3 = 1.3199e+30, D4 = .2998e+31

 

First column Routh table

a4 = 25, a3 = 3e6, b3 = 5.9113e+10, c3 = 7.4429e+12, d3 = 3.3750e+14

 

 

Example 11.3                                             Stable

            Determinants

D1 = 2.07e12, D2 = 3.623596e22, D3 = 7.247192e28, D4 = 1.80912e30

 

First column Routh table

            a4 = 25, a3 = 2e6, a2 = 1.7518e10, a1 = 2.07e12, a0 = 1.315e13

 

 

Example 11.4 Oil –whip frequency 1990 rad/s, zeta = 0.1, wnfd = 1.9900e+03

 

Example 11.5                                      128.4265 rad/s

Example 11.6                                                 -

Example 11.7 Unstable speed range due to asymmetry in shaft is 42.4682 rad/s to 47.1869 rad/s

Unstable speed range due to unbalance is 21.2341 rad/s to 23.5935 rad/s

Example 11.8 The lower and upper instability ranges at different modes are

wn1_L =

1.0e+05 *

0.0103, 0.0416, 0.0958, 0.1764, 0.2894, 0.4457, 0.6658, 0.9948, 1.5616, 3.0547

 

wn1_U =

1.0e+05 *

0.0145, 0.0588, 0.1355, 0.2494, 0.4093, 0.6303, 0.9415, 1.4069, 2.2085, 4.3200

 

wn2_L =

1.0e+09 *

0.0004, 0.0061, 0.0312, 0.0998, 0.2467, 0.5164, 0.9594, 1.6258, 2.5570, 0.9692

wn2_U =

1.0e+10 *

-0.0001, -0.0013, -0.0064, -0.0192, -0.0442, -0.0846, -0.1421, -0.2157, -0.3034, 1.4097

 

wn3_L =

1.0e+05 *

0.0102, 0.0408, 0.0919, 0.1634, 0.2553, 0.3676, 0.5003, 0.6535, 0.8271, 1.0211

wn3_U =

1.0e+05 *

0.0144, 0.0578, 0.1300, 0.2310, 0.3610, 0.5198, 0.7076, 0.9242, 1.1697, 1.4440

 

Example 11.9                                                 

            (i)

            (ii)

           

            (iii)

           

                                                                                                  

 

Example 11.10

 

 

 

Exercises

 

Exercise 11.1 -

Exercise 11.2 Refer Section 11.8.

Exercise 11.3

Equations of motion

Eigen value problem (homogeneous equations)

Characteristic equation

Exercise 11.4 (i) whirl frequency as 44.7743 rad/s, unstable (ii) whirl frequency as 44.7186 rad/s, stable.

            For boundary of stability (BOS) whirl frequency will be same as undamped natural frequency and given by ωnf = 44.72 rad/s.

            Hint: Equate Eqns. 11.214 and 11.215 and try to obtain feasible expression of alpha

                    and beta. In Eqn. 11.215, if alpha is negative system will be stable. Beta gives

                    whirl frequency.

 

 

Exercise 11.5 Stable

            Determinants

D1 = 67.07e+009, D2 = 38.03e+018, D3 = 41.07e+021, D4 = 9.24e+018

 

First column Routh table

            a0 = 426.06e+009, a1 = 67.07e+009, a2 = 567.01e+006, a3 = 1.08e+003

a4 = 225.00e-006, a5 = 0.00e+000, a6 = 0.00e+000, a7 = 0.00e+000

 

Exercise 11.6

 

Exercise 11.7

Exercise 11.8

(i) C

(ii) A

(iii) D

(iv) B

(v) B

(vi) C

(vii) C

(viii) A

(ix) B

(x) A

(xi) C

(xii) A

(xiii) B

(xiv) C

(xv) A

(xvi) C

(xvii) B

(xviii) C

(xix) B

(xx) D

(xxi) A

(xxii) D

(xxiii) B

(xxiv) A

(xxv) A

(xxvi) A

(xxvii) C

(xxviii)                                           C

(xxix) D

(xxx) C

(xxxi) A

(xxxii) B

(xxxiii)                                           B

(xxxiv) B

(xxxv) A

(xxxvi) D

(xxxvii) D

(xxxviii) D

(xxxix) B

(xxxx) B

(xxxxi) C

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                                                                                                       

                                                                                                                                                                                               

 

 

 

Chapter 12

Examples

 

Ex

 

Chapter 13

Examples

 

Example 13.1 (a) Resultant unbalance and resultant unbalance moment are

                           

            (b) Equivalent unbalances are

                                 

(c) equivalent an unbalance and a couple

 

 

Example 13.2

     

The location of the angular position is 180o and the magnitude of the unbalance mass is 2.0 gm.

 

Example 13.3

Example 13.4     x = 5.1478,      m_unb = 0.0058 and angle = 307.4o

 

Example 13.5     wR_mag = 0.3358 kf, wR_ang = -13.1o

 

wL_mag = 0.4760 kg, wL_ang =  -119.0o

 

Example 13.6 -

 

Example 13.7     -

 

Exercises

13.1     m_unb gm Ð 314.4o.

13.2     m_unb = 6.5271 gm Р 257.3 deg.

 

13.3  and  

         and   

         % Change in WR = 20.1 and % Change in WL = 10.2.            

13.4 and

13.5 WR = 18.4522 gm Ð -138.8o, % Change in Wr = 73.5;

        WL = 21.2117 gm Ð 118.9o % Change in WL 47.5

 

13.6 -

13.7 -

13.8 -

13.9 (i) and  (ii) and  

 

        (iii) and

 

         (iv) and

 

        (v)         and     

 

        (vi) and for n = 1, 3, 5, …and  for n =2, 4, 6, ….

 

13.10 -

13.11 -

13.12 -

13.13 -

13.14

13.15

13.16 Resultant force magnitude, its phase are  and , respectively, with .

This angle will be CCW from y-axis while looking along the z-axis. That means  from x-axis. The resultant force R2 will be same as R1 also its phase magnitude will be same as . But its direction will be obtained as

 

Forces:  along positive x-axis        and      force Py2 along negative y-axis

 

The resultant force R2 will be act  from y-axis in CCW while looking along z-axis.

 

13.17 m12 = m12 = m22 = 0

 

13.18 (i)  (ii)

13.19

13.20 Balancing mass 1.2826 gm at – 22.63o and at a radius of 6 cm.

13.21 gm

13.22

13.23 Plane 1: mass 332.5001 gm at 28.92o and Plane 2: mass 188.4042 gm at  ̶ 28.78o (or 331.22o)

 

13.24 -

13.25

(i) D

(ii) C

(iii) A

(iv) D

(v) B

(vi) B

(vii) A

(viii) B

(ix) C

(x) B

(xi) C

(xii) C

(xiii) A

(xiv) D

(xv) A

(xvi) A

(xvii) C

(xviii) B

(xix) C

(xx) D

(xxi) C

xxii B

xxiii C

xxiv D

xxv B

xxvi D

xxvii C

xxviii A

xxix B

xxx A

 

 

 

 

Chapter 14

Examples

 

Example 14.1 360 N

 

Example 14.2

 

                       

 

Example 14.3 

 

 

 

 

Example 14.4 

 

Example 14.5 -

 

Example 14.6 MN/m; MN/m; MN/m; N/m    

 

        kN-s/m; kN-s/m; kN-s/m; kN-s/m

 

Example 14.7 -

 

Exercises

 

Exercise 14.1 MN/m

 

Exercise 14.2 MN/m

 

Exercise 14.3

 

Exercise 14.4 -

 

Exercise 14.5

 

 

Exercise 14.6  N/m ;

 

Exercise 14.7 Case I: Nan

Case II

 

 

Exercise 14.8

 

 

Exercise 14.9

Exercise 14.10

 

 

 

Exercise 14.11

(i) D

(ii) B

(iii) A

(iv) D

(v) D

(vi) D

(vii) D

(viii) A

(ix) A

(x) B

(xi) D

(xii) A

(xiii) A

(xiv) C

 

 

 

 

 

 

 

 

 

 

Chapter 15

Examples

 

Example 15.1  Precision = 1% (± 10 rpm), percentage accuracy = 5 %, and standard deviation = 8.94 rpm

 

Example 15.2              Case I: 2.24 %             Case II: 1.41 %

 

Example 15.3              1.49 %

 

Example 15.4              1 %

 

Example 15.5              2.4285

 

Example 15.6              0.412

 

Example 15.7              210.82 rad/s

 

Example 15.8              11.18 kN (or 12 kN)

 

Example 15.9              53.0103 dB

 

Example 15.10            81.5113 dB

 

Example 15.11            3.5566e-08 V

 

Exercise Problem Final Answers:

Exercise 15.1             

 

Exercise 15.2             

 

Exercise 15.3             

 

Exercise 15.4              V, W; V , W;

                                    V, W

 

Exercise 15.5              cm ; cm

 

Exercise 15.6              rad/s  and rad/s

 

Exercise 15.7              s,

 

Exercise 15.8

 

Exercise 15.9                                                                                                  m/s2

 

Exercise 15.10             dB

 

Exercise 15.11            Y1 = 1.5268´10-5m

 

Exercise 15.12            N/m, kg

 

Exercise 15.13            rad/s

 

Exercise 15.14            X = 0.0067 mm, a = 3.0000 m/s2

 

Exercise 15.15           

 

Exercise 15.16            rad/s

 

Exercise 15.17                                                                                               

(i) D

(ii) D

(iii) B

(iv) C

(v) A

(vi) B

(vii) C

(viii) C

(ix) A

(x) C

(xi) B

(xii) A

(xiii) B

(xiv) B

(xv) B

(xvi) C

(xvii) A

(xviii) D

(xix) A

(xx) C

(xxi) B

(xxii) D

(xxiii) C

(xxiv) A

(xxv) C

(xxvi) D

(xxvii) A

(xxviii) B

(xxix) B

(xxx) C

(xxxi) D

(xxxii) C

(xxxiii) D

(xxxiv) C

(xxxv) C

(xxxvi) B

(xxxvii) B

(xxxviii) B

(xxxix) C

(xxxx) A

 

 

 

Chapter 16

Examples

 

Example 16.1   Correct frequencies               120 and 460 Hz

          Missed with spurious frequency     200 Hz

          Spurious frequencies              100 and 300 Hz

 

Example 16.2  (i) stationary 1×30,       (ii) stationary 2×30,

(iii) 25 – 30 = - 5 Hz in the opposite direction as the actual shaft rotation,

(iv) 34 – 30 = 4 Hz in the same direction as the actual shaft rotation,

(v) 54 - 2×30 = - 6 Hz in the opposite direction as the actual shaft rotation,

(vi) 76 – 2×30 = 16 Hz or 76- 3×30 = - 14 Hz; we will see the minimum of these two, i.e. 14 Hz in the opposite direction as the actual shaft rotation,

(vii) stationary 20×30,

(viii) 15 -30 = - 15 Hz, since it is half the frequency of the shaft if we mark two different colours on the diagonally opposite on the shaft surface we will see them alternatively,

(ix) 45-30 = 15 Hz, in this case also if we mark two different colours on the diagonally opposite we will see them in alternatively,

(x) 13- 30 = - 17 Hz in the opposite direction as the actual shaft rotation, and (xi) 18 -30 = -12 Hz, in the opposite direction as the actual shaft rotation.

 

Example 16.3 

           

 

Example 16.4 

Example 16.5 

Example 16.6 

Example 16.7 

Example 16.8 

Example 16.9  So 1×, -1×, 2×, -2×, 3×, -3× , 4× and -4× harmonics have respectively amplitude 3.5, 1.5, 3.5, 0.5, 3.0, -4.0, 2.5, 4.5. It indicate that all harmonics except -3× have the same zero phase. The - 3× harmonics has 1800 phase.

 

 

Exercises

 

Exercise 16.1  (i) Up to 250 Hz there will not be aliasing effect. (ii) Sampling interval 0.000667 s

 

Exercise 16.2              X0 = 4.0000 + 0.0000i;            X1 = -0.7225 - 0.3479i;

                                    X2 = -1.4010 - 1.7568i             X3 = 0.1235 + 0.5410i

                                    X4 = 0.1235 - 0.5410i              X5 = -1.4010 + 1.7568i

                                    X6 = -0.7225 + 0.3479i

 

Exercise 16.3

(i) The sampling frequency is 175 Hz that gives the Nyquist frequency as 175/2 =87.5 Hz. That means 25 Hz and 40 Hz will be corrected captured. However, corresponding to 100 Hz there will be a spurious signal of frequency 100 – 87.5 = 12.5 Hz.

(ii) The frequency of signal to be captured is 3 kHz, so sampling frequency should be twice of it that is fs = 6 kHz. So the sampling interval will be Dt = 1/ fs = 1/6000 = 1.667´10-4 sec. For T = 1 second data, the number of points will be N = T/Dt = 1/(1.667´10-4) = 6000.

(iii) The leakage error can be minimized by (a) tuning the sample length so that signal is captured for its multiple period for this case no leakage error will be present, (b) windowing function, however, for this case the amplitudes will not be to the scale, it will be scaled down.

(iv)       X0 = 0.0000 + 0.0000i;                        X2 = 0.2000 + 0.2000i

            X3 = 0.0000 + 0.0000i                         X4 = 0.2000 - 0.2000i

 

Exercise 16.4

Exercise 16.5  (i) Given that

                        ;                       

Now, Fundamental frequency is given as

                                               

The Nyquist frequency is given as

                                               

Now, to measure 1 kHz signal, we should have sampling interval as

                           

With sampling frequency of 2 kHz.

 

(ii) -

 

Exercise 16.6

Answers: (i) B             (ii) A               (iii) A              (iv) B               (v) B                (vi) B               (vii) D             (viii) B            (ix) D              (x) A                (xi) D              (xii) B

(xiii) D            (xiv) C             (xv) B              (xvi) C             (xvii) C          

(xviii) A          (xix) C             (xx) C              (xxi) A            (xxii) C           (xxiii) A

(xxiv) D          (xxv) D           (xxvi) A          (xxvii) B         (xxviii)             D        (xxix) B

(xxx) D           (xxxi) C           (xxxii) C         (xxxiii)             C        (xxxiv) D        (xxxv) C

(xxxvi) A        (xxxvii) A       (xxxviii) B      (xxxix) D        (xxxx) C          (xxxxi) B

 

 

Chapter 17

Examples

 

Example 17.1

 

Example 17.2

Bearing specifications and fault frequency multipliers

Exercises

Exercise 17.1

Calculations of Possible Excitation Frequencies

 

Due to the Angular Speed of Conveyor Belt Rollers & its Bearings: The conveyor belt is supported by rollers and it is assumed that there is no skidding of belt over rollers (it will be ensured when belt has prescribed pretension and rollers are not damaged). This allows us to calculate the angular speed of rollers, fR, (or idler passing frequency) as

 

Hz                                                                             (1)

                       

where = 4.2 m/s is the speed of the conveyor belt (or the circumferential velocity of the roller of the conveyor belt) and = 159 mm is the outer diameter of roller.

The fundamental ball-pass (or train or cage) frequency for a deep-groove ball bearing of the conveyor belt roller, when the outer ring (i.e., the belt roller) of the roller is rotating with , is given as

 

                                          (2)

 

where Db = 11.1 mm and Dm = 43.5 mm are the ball and pitch diameters of the bearing. When there is a fault in a bearing, then only this frequency would be of any significance.

Due to the Linear Speed of Conveyors: The frequency of passing the carrying belt (or belt passing frequency over the roller supports) can be calculated as

 

 Hz                                                                                   (3)

 

where  is the time period of conveyor belt over two roller spans, is the roller support span for the carrying belt i.e. the distance between two roller supports for the belt, and  is the speed of the conveyor belt. For the present case, the roller support span had two values (a) Lcb = 22.5/6 = 3.75 m for the carrying belt (since it has six roller supports in one gallery), and (b) Lrb = 22.5/3 = 7.5 m for the return belt (since it has three roller supports in one gallery). For 25m span between two neighbouring rollers the frequency would go down to 1 Hz. Similarly, for the returning belt, the belt passing frequency can be obtained as

 

 Hz                                                                                   (4)

 

Another passing frequency of the belt through a single gallery could be obtained as

 

 Hz                                                                            (5)

 

It should be observed that excitation frequencies related to belt are very low (below 2 Hz) and the major force which comes all the time to the gallery structure is due to belt movement only. Hence, these frequencies and their few higher harmonics (2×, 3×, etc.) would be very dangerous if some of the natural frequencies of gallery structure are present in these low frequency reasons.

During to the Start-up of the Conveyor Belt System: It was observed that during start-up of conveyor belt system from the rest gave a low frequency and high amplitude vibrations. However, it stabilised as soon as conveyor reached its maximum speed and loading. Some transient vibration spectrum of this sort was captured and will be presented and discussed in the subsequent section.

Due to Engines of the Inspection Vehicle: The inspection vehicle engine (2600 rpm) that runs on galleries itself to carry maintenance personal of conveyor belt could be a source of excitation with a frequency of

 

Hz                                                                                     (6)

 

and the inspection vehicle itself could be another source of vibration especially during sudden starting and stopping of the vehicle, which could excite several frequencies. The generator on the inspection car could be a source of vibration (3600 rpm = 60 Hz). However, these forces are occasional on the structure.

Due to Winds and Earth Quakes: Apart from these some unexpected forces such as wind (gust) forces and earth quakes are additional unknown forces that could damage the structure. These are exceptional cases; however, some preventive measure would definitely be increasing the life of the structure.

Among all these frequencies the forces due to conveyor belt linear motion is expected to have a predominant effect on the vibration of steel gallery structures due to possible resonance conditions, especially of the fundamental frequency and few higher natural frequencies. This is due to the presence of a major dynamic force in the gallery towards movement of the about 34 km long massive belt with lime stones on it.

 

Exercise 17.2 -

Exercise 17.3

 

(i) C

(ii) D

(iii) A

(iv) D

(v) C

(vi) B

(vii) C

(viii) D

(ix) A

(x) A

(xi) B

(xii) C

(xiii) D

(xiv) B

(xv) D

(xvi) D

(xvii) B

(xviii) D

(xix) C

(xx) B

(xxi) D

(xxii) C

 

 

 

 

 

 

 

 

 

 

 

Chapter 18

Examples