Summary of Verilog Syntax

1. Module & Instantiation of Instances

A Module in Verilog is declared within the pair of keyworasodule andendmodule .
Following the keywordnodule are themodule nameandport interface list.

module my_module (a, b, c, d);
input a, b;
output c, d;

endmodule

All instancesmust benamedexcept the instances of primitives. Only primitives\Merilog
can haveanonymous instancesi.e.and, or , nand, nor , xor , xnor , buf , not ,
bufifl ,bufi0 ,notifl ,notif0 , nmos, pmos, cmos, tran , tranifl | tranifO
rnmos, rpmos, rcmos , rtran , rtranifl | rtranifO

Port Connections at Instantiations
In Verilog, there are 2 ways of specifying connections among ports of instances.

a) By ordered list (positional association)
This is the more intuitive method, where the signals to be connected must appear in the
module instantiation in the same order as the ports listed in module definition.

b) By name(named association)
When there are too many ports in the large modtilggecomes difficult to track the order.
Connecting the signals to the ports by the port names increaaeability and reduces

possible errors.
module top;

reg A, B;

wire C, D;

my_module m1 (A, B, C, D); /I By order
my_module m2 (.b(B), .d(D), .c(C), .a(A)); /I By name

endmodule

Parameterized Instantiations

The values of parameters candeerridden during instantiation, so that each instance can
be customized separately. Alternativalgfparam statement can be used for theeme
purpose.

Copyright © 1997, Hon-Chi Ng.

Permission to duplicate and distribute this document is herewith granted for sole educational purpose without any commercial
advantage, provided this copyright message is accompanied in all the duplicates distributed. All other rights reserved.

All Cadence’s tools referred are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks belong
to their respective owners.

Cpr E 305 Laboratory Tutorial O Verilog Syntax Page 2 of 2

module my_module (a, b, c,d);
parameter x = 0;

input a, b;
output c, d;

parametery =0, z=0;
endmodule
module top;

reg A, B;

wire C, D;

my_module #(2, 4, 3) m1 (A, B, C, D);
IIx=2,y=4,2 = 3ininstance m1

my_module #(5, 3, 1) m2 (.b(B), .d(D), .c(C), .a(A));
/I x=5,y=3,z=1Iininstance m2

defparam m3.x=4, m3.y=2,m3.z=5;

my_module m3 (A, B, C, D); /I x=4,y=2,z=5ininstance m3

endmodule
2. Data Types
There are 2 groups of data typesverilog, namelyphysical andabstract.
a) Physical data type

* Net (wire ,wand, wor, tri ,triand ,trior). Default value iz. Used mainly in
structural modeling.

* Register (eg). Default value ix. Used in dataflow/RTL and behavioral modelings.

» Charge storage nodtifeg). Default value ix. Used in gatdevel and switch
level modelings.

b) Abstract data type— used only in behavioral modeling and test fixture.
* Integer (nteger) stores 32bit signed quantity.
» Time (time) stores 64bit unsigned quantity from system tagkme .
» Real feal) stores floatingpoint quantity.
» Parametergarameter) substitutes constant.
* Event event) is only name reference- does not hold viae.

Unfortunately, the current standard\@drilog does not support useiefined types, unlike
VHDL.

3. Values & Literals

Verilog provides 4 basic values,

a) 0 — logic zero or false condition

b) 1 — logic one, or true condition

c) x — unknavn/undefined logic value. Only for physical data types.

Last Updated: 02/07/01 4:24 PM

Cpr E 305 Laboratory Tutorial O Verilog Syntax Page 3 of 3

d) z — high-impedance/floating state. Only for physical data types.

Constants irVerilog are expressed in the following format:
width ' radix value
width — Expressed in decimal integer. @ptal, default is inferred from value.
' radix — Binary(), octal©), decimal@l), or hexadecimak(). Optional, default is decimal.
value — Any combination of the 4 basic values can be digits for radix octal, decimal or

hexadecimal.
4'b1011 /[4 -bit binary of value 1011
234 /'3 - digit decimal of value 234
2'h5a /l2 -digit(8 - bit) hexadecimal of value 5A
3'0671 /I3 - digit (9 - bit) octal of value 671
4b'1x0z /4 - bit binary. 2nd MSB is unknown. LSB is Hi -Z.
3.14 /I Floating point
1.28e5 /I Sc ientific notation

There are 8 different strength levels that can be associated by values 0 and 1.

St[icglth Abbreviation Type Degree
zﬂgg:ﬁ 23(1) driving strongest
258282 g:g driving A
BE”? Eﬂ? driving

:232(1) tgg charge storage

vaggllig wgg driving

mgg:ﬂm({ mgg charge storage

§m§”? Smg charge storage Y
E:gﬂ;? EEE weakest

In the case ofontention, thestronger signal dominates Combination of 2 pposite
values of same strength results in a valug of

St0, Pul = St0

Sul,lLal = Sul

PuO, Pul = PuX

4. Nets & Registers

Net is theconnectionbetween ports of modules within a higher module. Netis used in test
fixtures and all modeling alistction including behavioral. Default value of nehigh-Z

(z). Nets just onlypass valuedrom one end to the other, i.e. it does not store the value.
Once the output device discontinues driving the net, the value in the net becom&s(high
Begdes the usual netjre), Verilog also provides special netw@r , wand) to resolve the

Last Updated: 02/07/01 4:24 PM

Cpr E 305 Laboratory Tutorial 0 Verilog Syntax Page 4 of 4

final logic when there is logic contention by multiple drivers. , trior andtriand are
just the aliases fowire , wor andwand for readability reason.

Register ighe storagethat retains (remembers) the value last assigned to it, therefore,
unlikewire , it needs not to be continuously driven. It is only used in the test fixture,
behavioral, and dataflow modelings. The default value of a registekisown (X).

Other special nets iXerilog are the supplies like 8/Vpp (supplyl), Gnd Gupply0),
pullup (pullup) and pulldown pulldown), resistive pulluptfil) and resistive
pulldown ¢ri0), and charge storage/capacitive nagiegg) which hasstorage
strength associated with it.

5. Vectors & Arrays

Physical data typeqwire ,reg ,trireg) can be declared agctor/bus(multiple bit
widths). AnArray is a chunk of consecutive values of the same type. Data teges
integer andtime can be declared as an grraviultidimensional arrays are not
permitted inVerilog, however, arrays can be declared for vectored register type.

wire [3:0] data; /I 4 - bit wide vector
reg bit [1:8]; /[array of 8 1 - bit scalar
reg [3:0] mem [1:8]; /[array of 8 4 - bit vector

The range of vectors and arrays declared can start from any integer, and in either ascending
or descending order. However, when accessing the vector or arralicensubrange)
specified must be within the range and in the same order as declared.

data[4] /[Out - of - range
bit[5:2] /I Wrong order

There is no syntax available to access a bit slice of an array elem#re array element has
to be stored to &emporary variable.

/I Can't do mem[7][2]

reg [3:0] tmp; /I Need temporary variable
tmp = mem|[7];

tmp[2];

6. Tasks & Functions

Tasks and functions iWerilog closely resemble the procedures and functions in
programming languages. Both tasks and functionslefieed locally in the module in
which the tasks and functions will be inked. Noinitial oralways statement may be
defined within either tasks or functions.

Tasks and functions are different task may have 0 or more arguments of typput
output orinout ;function must have at least one input argument. Tasks do not
return value but pass values througlitput andinout arguments; functions always
return a single value, but cannot haagtput orinout arguments. Tasks may contain

Last Updated: 02/07/01 4:24 PM

Cpr E 305 Laboratory Tutorial O Verilog Syntax Page 50of 5

delay, event or timing control statements; functions may not. Tasks can invoke other tasks
and functions; functions can only invoke other functions, but not tasks.

module m;
reg [1:0] r1;
reg [3:0] r2;
regr3;

éiways
begin
2= my_func(rl); /I Invoke function
'r'riy_task (r2, r3); /I Invoke task
end
task my_task;
input [3:0] i;
output o;
begin
end
endtask
function [3:0] my_func;
input [1:0] i;
begin
'n'w'y_func =..; /I Return value
end
endfunction

endmodule

7. System Tasks & Compiler Directives

System tasks are thmiilt -in tasks standard irfVerilog. All system tasks are preceded with
$. Some useful system tasks commonly used are:

$display(" format", vi1, v2,..); /I Similar format to printf() in C

$write(" format", vi1, v2,..); /I $display appends newline at the end,
/I but $write does not.

$strobe(" format", vl1, v2,..); /] $strobe always executes last among

/I assignment statements of the same

/I time. Order for $display among

/Il as signment statements of the same
/I time is unknown.

$monitor(" format", vi, v2,..); /I Invoke only once, and execute (print)
/I automatically when any of the
/I variables change value.

$monitoron; /I Enable monitoring from he re

$monitoroff; /I Disable monitoring from here

$stop; /I Stop the simulation

$finish; /I Terminate and exit the simulation

$time; /I Return current simulation time in 64 - bit integer
$stime; /I Return current simulation time in 32 - bit integer

Last Updated: 02/07/01 4:24 PM

Cpr E 305 Laboratory Tutorial O Verilog Syntax Page 6 of 6

$r ealtime; /I Return current simulation time in 64 - bit real

$random(seed); /I Return random number. Seed is optional.

Compiler directives are instructions Werilog duringcompilation instead of simulation.
All compiler directives are preceded with

‘define alias text //Create analias. Aliases are replaced/substituted
/I prior to compilation.

“include file /I Insert another file as part of the current file.
“ifdef cond /I'lf cond is defined, compile the following.
“else

“endif

8. Operators

Operator . Precedence
Symbol Function Group Operands Rank
! logical negation Logical unary 1
~ bitwise negation Bitwise unary
& reduction and Reduction unary
| reduction or Reduction unary
A reduction xor Reduction unary
~& reduction nand Reduction unary
~ reduction nor Reduction unary
~N reduction xnor reduction unary
+ unary positive arithmetic unary
- unary negative arithmetic unary
* multiplication arithmetic binary 2
/ division arithmetic binary
% modulus arithmetic binary
+ addition arithmetic binary 3
- subtraction arithmetic binary
<< left shift shift binary 4
>> right shift shift binary
< less than relational binary 5
<= less than or equal relational binary
> greater than relational binary
>= greater than or equal relational binary
== equality equality binary 6
I= inequality equality binary
=== case equality equality binary
I== case inequality equality binary
& bitwise and bitwise binary 7
A bitwise xor bitwise binary 8
A~ bitwise xnor bitwise binary

Last Updated: 02/07/01 4:24 PM

Cpr E 305 Laboratory Tutorial O Verilog Syntax Page 7 of 7

| bitwise or bitwise binary 9
&& logical and logical binary 10
I logical or logical binary 11
? conditional ternary 12
= blocking assignment assignment binary 13
<= non-blocking assignment assignment binary
1 bit-select
[:] part-select

{} concatenation

{{} replication

Operators within the same precedence rank are assofnatedeft to right .

Verilog hasspecial syntax restrictionon usirg bothreduction andbitwise operators
within the same expressier even though reduction operator has higher precedence,
parentheses must be used to avoid confusion with a logical operator.

a & (&b)
2l (b) . - . -
Since bitselect, parselect, concatenaticand replication operators upairs of delimiters
to specify their operands, there is no notion of operator precedence associated with them.

9. Structured Procedures

10.

There are 2 structured procedure statements, namgh) andalways . They are th
basic statements for behavioral modeling from which other behavioral statements are
declared. Thegannot be nestedbut many of them can be declared within a module.

a) initial statement
initial statement executexactly onceand becomemactive upon exhaustion. If
there are multiplenitial statements, they all start to execute concurrently at time O.

b) always statement
always statementontinuously repeatsitself throughout the simulation. If there are
multiple always statements, they altart to execute concurrently at time &lways
statements may be triggered by events usingvamt recognizing list@() .

Sequential & Parallel Blocks

Block statements groupultiple statementstogether. Block statements can be either
sequentibor parallel. Block statements can bestedor namedfor direct access, and
disabledif named.

Last Updated: 02/07/01 4:24 PM

Cpr E 305 Laboratory Tutorial O Verilog Syntax Page 8 of 8

a) Sequential block
Sequential blocks are delimited by the pair of keywdregin andend. The
statements in sequential blocks are executed ioter they are specified, except non
blocking assignments.

b) Parallel block
Parallel blocks are delimited by the pair of keywofolk andjoin . The statements in
parallel blocks are executedncurrently. Hence, the order of the statements in parallel
blocks are immaterial.

11. Assignments

a) Continuous assignment
Continuous assignments are alwagsive — changes in RHS (right hand side)
expression is assigned to is LHS (left hand side) net.

LHS must be a scalar or vectoroéts and assignmemhust be performedutside

procedure statements.
assign #delay net = expression;

Delay may be associated with the assignment, where new changes in expression is
assigned to net after the delay. However, note that such delay isic&tédl delay, i.e.

if the expression changes again within the delay after the 1st change, only the latest
change is assigned to net after the delay from 2nd change. The 1st change within the
delay is not assigned to net.

b) Procedural assignment
LHS must be a scalar vector ofregisters and assignment must be performeside
procedure statementsitial oralways). Assignment is only active (evaluated and
loaded) when control is transferred to it. After that, the value of register remains until it
is reassigneé by another procedural assignment.

There are 2 types of procedural assignments:

* Blocking assignment
Blocking assignments are executed in the order specified in the sequential block, i.e. a
blocking assignment waits for previous blocking assignino¢ the same time to

complete before executing.
register = expression;

* Nonblocking assignment
Nonblocking assignments are executed concurrently within the sequential blocks, i.e. a
nonblocking assignment executes without waiting for other nakiohg assignments of

occurring at the same time to complete.
register <= expression;

Intra -assignment delaymay be used for procedural assignment.
register = #delay expression;

Last Updated: 02/07/01 4:24 PM

Cpr E 305 Laboratory Tutorial O Verilog Syntax Page 9 of 9

The expression is evaluated immediately, but the value is assignegister after the

delay. Thisis equivalent to
reg temporary;
temporary = expression;
#delay register = temporary;

¢) Quasicontinuous (procedural continuougssignment
The LHS must be a scalar or vectorrefjisters and assignment must beside
procedure statements.

Similar to procedural assignment, however gu@sitinuous assignment beconaesive
andstays activefrom the point of the assignment until it deactivatedthrough
deassignment. When active, quasitinuous assignmenterridesany procedural
assignment to the register.

begin
aééign register = expressionl; /I Activate quasi - continuous
rébister = expression2; /I No effect. Overridden by active
/I quasi - continuous
agsign register = expression3; / Becomes active and overrides
/I previous quasi - continuous
dééssign register; /I Disable quasi - continuous
ré'njister = expression4; /I Executed.
end

There isno delayassociated with quasioninuous assignment. . Only the activation may
be delayed. However, once itastivated, any changes in expression will be assigned to the
registeimmediately.

12. Timing Controls

a) Delay-based
Execution of a statement can be delayed by a ftx@@ period using the # operator.

#num statement; /I Delay num time from previous statement before
/I executing

Intra -assignment delay

This evaluates the RHS expression immediately, but delays for atimedperiod before
assigning to LHS, whit must be a register.

register = #num expr; /l Evaluate expr now, but delay num time unit
/I before assigning to register

b) Event-based

Last Updated: 02/07/01 4:24 PM

Cpr E 305 Laboratory Tutorial O Verilog Syntax Page 10 of 10

Execution of a statement is triggered by the change of value in a register or a né® The
operator capires such change of value within recognizing list To allow multiple
triggers, us®r between each event.

@(signal) statement; /I Execute whenever signal changes values
@(posedge signal) statement;// Execute at positive edge of signal
@(negedge s ignal) statement;// Execute at negative edge of signal
register = @(signal) expr; /I Similar to intra - assignment
always @(s1 or s2 or s3) /I Enter always block when either s1, s2

/I or s3 changes value

Level-sensitive
The @is edgesensiive. To achieve levesensitive, use additiondl statement to check

the values of each event.

always @(signal)
if (signal)

else

Alternatively, combination odlways andwait can be used. But, note thagit is a
blockingstatement, i.ewait blocks following statement until the condition is true.

always
wait (event) statement; /I Execute statement when event is true

c) Namedevent
Event isexplicitly triggered (with - > operator) andecognized(with @operator).
Note that the named event cannot hold any data.
event my_event; /I Declare an event
always @(my_event) /I Execute when my_event is triggered
begin
end

always
begin

if (...)

->my_event; /[Trigger my_event
end
13. Conditional Statements

The body only allows a single statement. If multiple statements are desired, block
statements may be used to enclose multiple statements in place of the body.

a) If-Then-Else
if (expr)
statement;

if (expr)

Last Updated: 02/07/01 4:24 PM

Cpr E 305 Laboratory Tutorial O Verilog Syntax Page 11 of 11

statemen t;
else
statement;

if (expr) statement;

else if (expr) statement;
else if (expr) statement;
else statement;

b) Case
case (expr)
valuel : statement;
value2 : statement;
value3 : statement;

déi‘ault . statement;
endca se

14. Loop Statements

The body only allows a single statement. If multiple statements are desired, block
statements may be used to enclose multiple statements in place of the body.

a) While
while (‘expr)
statement;

b) For
for (init ; expr ; step)
statement;

c) Repeat
Iterations are based on a constant instead of conditional expression.

repeat (constant) /I Fix number of loops
statement;

d) Forever
forever /I Same as while (1)
statement;

References:

[1] "Verilog-XL Reference Manual ver 2.2." OpenBook, Cadence Design Systems, 1995.

[2] Samir Palnitkar. "Verilog HDL: A Guide to Digital Design and Synthesis." SunSoft Press,
1996.

[3] Donald Thomas, Phil Moorby. "The Verilog Hardware Description Language, 2nd ed."
Kluwer Academic Publishers, 1994.

[4] Eli Sternheim, Rajvir Singh, Rajeev Madhavan, Yatin Trivedi. "Digital Design and
Synthesis with Verilog HDL." Automata Publishing Company, 1993.

Last Updated: 02/07/01 4:24 PM

