

Copyright © 1997, Hon-Chi Ng.

Permission to duplicate and distribute this document is herewith granted for sole educational purpose without any commercial
advantage, provided this copyright message is accompanied in all the duplicates distributed. All other rights reserved.

All Cadence’s tools referred are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks belong
to their respective owners.

Summary of Verilog Syntax

1. Module & Instantiation of Instances

 A Module in Verilog is declared within the pair of keywords module and endmodule .

Following the keyword module are the module name and port interface list .

 module my_module (a, b, c, d);
 input a, b;
 output c, d;
 ...
 endmodule

 All instances must be named except the instances of primitives. Only primitives in Verilog

can have anonymous instances, i.e. and , or , nand , nor , xor , xnor , buf , not ,
bufif1 , bufi0 , notif1 , notif0 , nmos, pmos, cmos, tran , tranif1 , tranif0 ,
rnmos , rpmos , rcmos , rtran , rtranif1 , rtranif0 .

 Port Connections at Instantiations
 In Verilog, there are 2 ways of specifying connections among ports of instances.

 a) By ordered list (positional association)
 This is the more intuitive method, where the signals to be connected must appear in the

module instantiation in the same order as the ports listed in module definition.

 b) By name (named association)
 When there are too many ports in the large module, it becomes difficult to track the order.

Connecting the signals to the ports by the port names increases readability and reduces
possible errors.

 module top;
 reg A, B;
 wire C, D;

 my_module m1 (A, B, C, D); // By order
 my_module m2 (.b(B), .d(D), .c(C), .a(A)); // By name
 ...

 endmodule

 Parameterized Instantiations
 The values of parameters can be overridden during instantiation, so that each instance can

be customized separately. Alternatively, defparam statement can be used for the same
purpose.

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 2 of 2

 Last Updated: 02/07/01 4:24 PM

 module my_module (a, b, c, d);
 parameter x = 0;

 input a, b;
 output c, d;

 parameter y = 0, z = 0;
 ...
 endmodule

 module top;
 reg A, B;
 wire C, D;

 my_module #(2, 4, 3) m1 (A, B, C, D);
 // x = 2, y = 4, z = 3 in instance m1

 my_module #(5, 3, 1) m2 (.b(B), .d(D), .c(C), .a(A));
 // x = 5, y = 3, z = 1 in instance m2

 defparam m3.x = 4, m3.y = 2, m3.z = 5;
 my_module m3 (A, B, C, D); // x = 4, y = 2, z = 5 in instance m3
 ...
 endmodule

2. Data Types

 There are 2 groups of data types in Verilog, namely physical and abstract.

 a) Physical data type
 • Net (wire , wand, wor , tri , triand , trior). Default value is z . Used mainly in

 structural modeling.
 • Register (reg). Default value is x . Used in dataflow/RTL and behavioral modelings.
 • Charge storage node (trireg). Default value is x . Used in gate-level and switch-

level modelings.

 b) Abstract data type — used only in behavioral modeling and test fixture.
 • Integer (integer) stores 32-bit signed quantity.
 • Time (time) stores 64-bit unsigned quantity from system task $time .
 • Real (real) stores floating-point quantity.
 • Parameter (parameter) substitutes constant.
 • Event (event) is only name reference — does not hold value.

 Unfortunately, the current standard of Verilog does not support user-defined types, unlike

VHDL.

3. Values & Literals

 Verilog provides 4 basic values,
 a) 0 — logic zero or false condition
 b) 1 — logic one, or true condition
 c) x — unknown/undefined logic value. Only for physical data types.

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 3 of 3

 Last Updated: 02/07/01 4:24 PM

 d) z — high-impedance/floating state. Only for physical data types.

 Constants in Verilog are expressed in the following format:
 width ' radix value
 width — Expressed in decimal integer. Optional, default is inferred from value.
 ' radix — Binary(b), octal(o), decimal(d), or hexadecimal(h). Optional, default is decimal.

 value — Any combination of the 4 basic values can be digits for radix octal, decimal or
hexadecimal.

 4'b1011 // 4 - bit binary of value 1011
 234 // 3 - digit decimal of value 234
 2'h5a // 2 - digit (8 - bit) hexadecimal of value 5A
 3'o671 // 3 - digit (9 - bit) octal of value 671
 4b'1x0z // 4 - bit binary. 2nd MSB is unknown. LSB is Hi - Z.
 3.14 // Floating point
 1.28e5 // Sc ientific notation

There are 8 different strength levels that can be associated by values 0 and 1.

Strength

Level Abbreviation Type Degree

supply0
supply1

Su0
Su1

driving strongest

strong0
strong1

St0
St1

driving

pull0
pull1

Pu0
Pu1

driving

large0
large1

La0
La1

charge storage

weak0
weak1

We0
We1

driving

medium0
medium1

Me0
Me1

charge storage

small0
small1

Sm0
Sm1

charge storage

highz0
highz1

HiZ0
HiZ1

weakest

 In the case of contention, the stronger signal dominates. Combination of 2 opposite

values of same strength results in a value of x .
 St0 , Pu1 � St0
 Su1, La1 � Su1
 Pu0, Pu1 � PuX

4. Nets & Registers

 Net is the connection between ports of modules within a higher module. Net is used in test

fixtures and all modeling abstraction including behavioral. Default value of net is high-Z
(z). Nets just only pass values from one end to the other, i.e. it does not store the value.
Once the output device discontinues driving the net, the value in the net becomes high-Z (z).
Besides the usual net (wire), Verilog also provides special nets (wor , wand) to resolve the

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 4 of 4

 Last Updated: 02/07/01 4:24 PM

final logic when there is logic contention by multiple drivers. tri , trior and triand are
just the aliases for wire , wor and wand for readability reason.

 Register is the storage that retains (remembers) the value last assigned to it, therefore,

unlike wire , it needs not to be continuously driven. It is only used in the test fixture,
behavioral, and dataflow modelings. The default value of a register is unknown (x).

 Other special nets in Verilog are the supplies like VCC/VDD (supply1), Gnd (supply0),

pullup (pullup) and pulldown (pulldown), resistive pullup (tri1) and resistive
pulldown (tri0), and charge storage/capacitive node (trireg) which has storage
strength associated with it.

5. Vectors & Arrays

 Physical data types (wire , reg , trireg) can be declared as vector/bus (multiple bit

widths). An Array is a chunk of consecutive values of the same type. Data types reg ,
integer and time can be declared as an array. Multidimensional arrays are not
permitted in Verilog, however, arrays can be declared for vectored register type.

 wire [3:0] data; // 4 - bit wide vector
 reg bit [1:8]; // array of 8 1 - bit scalar
 reg [3:0] mem [1:8]; // array of 8 4 - bit vector

 The range of vectors and arrays declared can start from any integer, and in either ascending
 or descending order. However, when accessing the vector or array, the slice (subrange)
 specified must be within the range and in the same order as declared.

data[4] // Out - of - range

 bit[5:2] // Wrong order

 There is no syntax available to access a bit slice of an array element — the array element has

to be stored to a temporary variable.

 // Can't do mem[7][2]
 reg [3:0] tmp; // Need temporary variable
 tmp = mem[7];
 tmp[2];

6. Tasks & Functions

 Tasks and functions in Verilog closely resemble the procedures and functions in

programming languages. Both tasks and functions are defined locally in the module in
which the tasks and functions will be invoked. No initial or always statement may be
defined within either tasks or functions.

 Tasks and functions are different — task may have 0 or more arguments of type input ,

output or inout ; function must have at least one input argument. Tasks do not
return value but pass values through output and inout arguments; functions always
return a single value, but cannot have output or inout arguments. Tasks may contain

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 5 of 5

 Last Updated: 02/07/01 4:24 PM

delay, event or timing control statements; functions may not. Tasks can invoke other tasks
and functions; functions can only invoke other functions, but not tasks.

module m;
 reg [1:0] r1;
 reg [3:0] r2;
 reg r3;

 ...
 always
 begin
 ...
 r2 = my_func(r1); // Invoke function
 ...
 my_task (r2, r3); // Invoke task
 ...
 end

 task my_task;
 input [3:0] i;
 output o;
 begin
 ...
 end
 endtask
 ...
 function [3:0] my_func;
 input [1:0] i;
 begin
 ...
 my_func = ...; // Return value
 end
 endfunction
 ...
endmodule

7. System Tasks & Compiler Directives

 System tasks are the built -in tasks standard in Verilog. All system tasks are preceded with

$. Some useful system tasks commonly used are:

$display(" format", v1, v2, ...); // Similar format to printf() in C
$write(" format", v1, v2, ...); // $display appends newline at the end,
 // but $write does not.
$strobe(" format", v1, v2, ...); // $strobe always executes last among
 // assignment statements of the same
 // time. Order for $display among
 // as signment statements of the same
 // time is unknown.

$monitor(" format", v1, v2, ...); // Invoke only once, and execute (print)
 // automatically when any of the
 // variables change value.
$monitoron; // Enable monitoring from he re
$monitoroff; // Disable monitoring from here

$stop; // Stop the simulation
$finish; // Terminate and exit the simulation

$time; // Return current simulation time in 64 - bit integer
$stime; // Return current simulation time in 32 - bit integer

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 6 of 6

 Last Updated: 02/07/01 4:24 PM

$r ealtime; // Return current simulation time in 64 - bit real

$random(seed); // Return random number. Seed is optional.

 Compiler directives are instructions to Verilog during compilation instead of simulation.

All compiler directives are preceded with ` .

`define alias text // Create an alias. Aliases are replaced/substituted
 // prior to compilation.

`include file // Insert another file as part of the current file.

`ifdef cond // If cond is defined, compile the following.
`else
`endif

8. Opera tors

Operator
Symbol Function Group Operands

Precedence
Rank

! logical negation Logical unary 1
~ bitwise negation Bitwise unary
& reduction and Reduction unary
| reduction or Reduction unary
^ reduction xor Reduction unary

~& reduction nand Reduction unary
~| reduction nor Reduction unary
~^ reduction xnor reduction unary
+ unary positive arithmetic unary
- unary negative arithmetic unary

* multiplication arithmetic binary 2
/ division arithmetic binary
% modulus arithmetic binary

+ addition arithmetic binary 3
- subtraction arithmetic binary

<< left shift shift binary 4
>> right shift shift binary

< less than relational binary 5

<= less than or equal relational binary
> greater than relational binary

>= greater than or equal relational binary

== equality equality binary 6
!= inequality equality binary

=== case equality equality binary
!== case inequality equality binary

& bitwise and bitwise binary 7

^ bitwise xor bitwise binary 8
^~ bitwise xnor bitwise binary

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 7 of 7

 Last Updated: 02/07/01 4:24 PM

| bitwise or bitwise binary 9

&& logical and logical binary 10

|| logical or logical binary 11

?: conditional ternary 12

= blocking assignment assignment binary 13
<= non-blocking assignment assignment binary

[] bit-select

[:] part-select
{} concatenation

{ {} } replication

 Operators within the same precedence rank are associated from left to right .

 Verilog has special syntax restriction on using both reduction and bitwise operators

within the same expression — even though reduction operator has higher precedence,
parentheses must be used to avoid confusion with a logical operator.

 a & (&b)
 a | (|b)

 Since bit-select, part-select, concatenation and replication operators use pairs of delimiters
to specify their operands, there is no notion of operator precedence associated with them.

9. Structured Procedures

 There are 2 structured procedure statements, namely initial and always . They are the

basic statements for behavioral modeling from which other behavioral statements are
declared. They cannot be nested, but many of them can be declared within a module.

 a) initial statement
 initial statement executes exactly once and becomes inactive upon exhaustion. If

there are multiple initial statements, they all start to execute concurrently at time 0.

 b) always statement
 always statement continuously repeats itself throughout the simulation. If there are

multiple always statements, they all start to execute concurrently at time 0. always
statements may be triggered by events using an event recognizing list @() .

10. Sequential & Parallel Blocks

 Block statements group multiple statements together. Block statements can be either

sequential or parallel. Block statements can be nested or named for direct access, and
disabled if named.

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 8 of 8

 Last Updated: 02/07/01 4:24 PM

 a) Sequential block
 Sequential blocks are delimited by the pair of keywords begin and end . The

statements in sequential blocks are executed in the order they are specified, except non-
blocking assignments.

 b) Parallel block
 Parallel blocks are delimited by the pair of keywords fork and join . The statements in

parallel blocks are executed concurrently. Hence, the order of the statements in parallel
blocks are immaterial.

11. Assignments

 a) Continuous assignment
 Continuous assignments are always active — changes in RHS (right hand side)

expression is assigned to is LHS (left hand side) net.

 LHS must be a scalar or vector of nets, and assignment must be performed outside

procedure statements.
 assign #delay net = expression;

 Delay may be associated with the assignment, where new changes in expression is

assigned to net after the delay. However, note that such delay is called inertial delay, i.e.
if the expression changes again within the delay after the 1st change, only the latest
change is assigned to net after the delay from 2nd change. The 1st change within the
delay is not assigned to net.

 b) Procedural assignment
 LHS must be a scalar or vector of registers, and assignment must be performed inside

procedure statements (initial or always). Assignment is only active (evaluated and
loaded) when control is transferred to it. After that, the value of register remains until it
is reassigned by another procedural assignment.

 There are 2 types of procedural assignments:
 • Blocking assignment

 Blocking assignments are executed in the order specified in the sequential block, i.e. a
blocking assignment waits for previous blocking assignment of the same time to
complete before executing.

 register = expression;

 • Nonblocking assignment

 Nonblocking assignments are executed concurrently within the sequential blocks, i.e. a
nonblocking assignment executes without waiting for other nonblocking assignments of
occurring at the same time to complete.

 register <= expression;

 Intra -assignment delay may be used for procedural assignment.

 register = #delay expression;

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 9 of 9

 Last Updated: 02/07/01 4:24 PM

 The expression is evaluated immediately, but the value is assigned to register after the

delay. This is equivalent to
 reg temporary;
 temporary = expression;
 #delay register = temporary;

 c) Quasi-continuous (procedural continuous) assignment
 The LHS must be a scalar or vector of registers, and assignment must be inside

procedure statements.

 Similar to procedural assignment, however quasi-continuous assignment becomes active

and stays active from the point of the assignment until it is deactivated through
deassignment. When active, quasi-continuous assignment overrides any procedural
assignment to the register.

 begin
 ...
 assign register = expression1; // Activate quasi - continuous
 ...
 register = expression2; // No effect. Overridden by active
 // quasi - continuous
 ...
 assign register = expression3; // Becomes active and overrides
 // previous quasi - continuous
 ...
 deassign register; // Disable quasi - continuous
 ...
 register = expression4; // Executed.
 ...
 end

 There is no delay associated with quasi-continuous assignment. . Only the activation may

be delayed. However, once it is activated, any changes in expression will be assigned to the
register immediately.

12. Timing Controls

 a) Delay-based
 Execution of a statement can be delayed by a fixed-time period using the # operator.

 #num statement; // Delay num time from previous statement before
 // executing

 Intra -assignment delay
 This evaluates the RHS expression immediately, but delays for a fixed-time period before

assigning to LHS, which must be a register.

 register = #num expr; // Evaluate expr now, but delay num time unit
 // before assigning to register

 b) Event-based

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 10 of 10

 Last Updated: 02/07/01 4:24 PM

 Execution of a statement is triggered by the change of value in a register or a net. The @
operator captures such change of value within its recognizing list. To allow multiple
triggers, use or between each event.

 @(signal) statement; // Execute whenever signal changes values
 @(posedge signal) statement;// Execute at positive edge of signal
 @(negedge s ignal) statement;// Execute at negative edge of signal
 register = @(signal) expr; // Similar to intra - assignment
 always @(s1 or s2 or s3) // Enter always block when either s1, s2
 ... // or s3 changes value

 Level-sensitive
 The @ is edge-sensitive. To achieve level-sensitive, use additional if statement to check

the values of each event.

 always @(signal)
 if (signal)
 ...
 else
 ...

 Alternatively, combination of always and wait can be used. But, note that wait is a

blocking statement, i.e. wait blocks following statement until the condition is true.

 always
 wait (event) statement; // Execute statement when event is true

 c) Named-event
 Event is explicitly triggered (with - > operator) and recognized (with @ operator).

Note that the named event cannot hold any data.

 event my_event; // Declare an event

 always @(my_event) // Execute when my_event is triggered
 begin
 ...
 end

 always
 begin
 ...
 if (...)
 - > my_event; // Trigger my_event
 ...
 end

13. Conditional Statements

 The body only allows a single statement. If multiple statements are desired, block

statements may be used to enclose multiple statements in place of the body.

 a) If -Then-Else

 if (expr)
 statement;

 if (expr)

Cpr E 305 Laboratory Tutorial  Verilog Syntax Page 11 of 11

 Last Updated: 02/07/01 4:24 PM

 statemen t;
 else
 statement;

 if (expr) statement;
 else if (expr) statement;
 else if (expr) statement;
 else statement;

 b) Case

 case (expr)
 value1 : statement;
 value2 : statement;
 value3 : statement;
 ...
 default : statement;
 endca se

14. Loop Statements

 The body only allows a single statement. If multiple statements are desired, block

statements may be used to enclose multiple statements in place of the body.

 a) While

 while (expr)
 statement;

 b) For

 for (init ; expr ; step)
 statement;

 c) Repeat
 Iterations are based on a constant instead of conditional expression.

 repeat (constant) // Fix number of loops
 statement;

 d) Forever

 forever // Same as while (1)
 statement;

References:

[1] "Verilog-XL Reference Manual ver 2.2." OpenBook, Cadence Design Systems, 1995.
[2] Samir Palnitkar. "Verilog HDL: A Guide to Digital Design and Synthesis." SunSoft Press,

1996.
[3] Donald Thomas, Phil Moorby. "The Verilog Hardware Description Language, 2nd ed."

Kluwer Academic Publishers, 1994.
[4] Eli Sternheim, Rajvir Singh, Rajeev Madhavan, Yatin Trivedi. "Digital Design and

Synthesis with Verilog HDL." Automata Publishing Company, 1993.

