A brief tutorial on formal verification with applications to security protocols

Nehul Jain
Ansuman Banerjee

Indian Statistical Institute
Outline

• Formal Verification: The basics
 – Explicit Model checking
 – Symbolic Analysis
 – CEGAR
 – Equivalence checking

• Formal verification: In the security context
 – Case studies on AES
June 2002

“Software bugs, or errors, are so prevalent and so detrimental that they cost the U.S. economy an estimated $59.5 billion annually, or about 0.6 percent of the gross domestic product

…

At the national level, over half of the costs are borne by software users and the remainder by software developers/vendors.”
“The study also found that, although all errors cannot be removed, more than a third of these costs, or an estimated $22.2 billion, could be eliminated by an improved testing infrastructure that enables earlier and more effective identification and removal of software defects.”
Model Checking

- Developed independently by Clarke and Emerson and by Queille and Sifakis in early 1980’s.

- Properties are written in propositional temporal logic.

- Systems are modeled by finite state machines.

- Verification procedure is an exhaustive search of the state space of the design.

- Model checking complements testing/simulation.
Advantages of Model Checking

• No proofs!!!

• Fast (compared to other rigorous methods)

• Diagnostic counterexamples

• No problem with partial specifications / properties

• Logics can easily express many concurrency properties
Model of computation

Microwave Oven Example

State-transition graph describes system evolving over time.
Temporal Logic

- The oven doesn’t **heat up** until the **door is closed**.

- **Not heat_up** holds **until door_closed**

- \((\lnot \text{heat_up}) \mathbin{U} \text{door_closed}\)
Basic Temporal Operators

The symbol “p” is an atomic proposition, e.g. “heat_up” or “door_closed”.

- **Fp** - p holds sometime in the **future**.
- **Gp** - p holds **globally** in the future.
- **Xp** - p holds **next** time.
- **pUq** - p holds **until** q holds.
Model Checking Problem

Let M be a model, i.e., a state-transition graph.

Let f be the property in temporal logic.

Find all states s such that M has property f at state s.

Efficient Algorithms: CE81, CES83
The EMC System 1982/83

- Preprocessor
- Model Checker (EMC)
- Properties
- State Transition Graph: 10^4 to 10^5 states
- True or Counterexamples
Model Checker Architecture

System Description

Formal Specification

State Explosion Problem!!

Model Checker

Validation or Counterexample
The State Explosion Problem

System Description

Combinatorial explosion of system states renders explicit model construction infeasible.

State Transition Graph

Exponential Growth of …
… global state space in number of concurrent components.
… memory states in memory size.

Feasibility of model checking inherently tied to handling state explosion.
Combating State Explosion

• **Binary Decision Diagrams** can be used to represent state transition systems more efficiently.
 ➔ *Symbolic Model Checking 1992*

• **Semantic techniques** for alleviating state explosion:
 – Partial Order Reduction.
 – Abstraction.
 – Compositional reasoning.
 – Symmetry.
 – Cone of influence reduction.
 – Semantic minimization.
Model Checking since 1981

1981 Clarke / Emerson: CTL Model Checking
 Sifakis / Quielle

1982 EMC: Explicit Model Checker
 Clarke, Emerson, Sistla

1990 Symbolic Model Checking
 Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
 McMillan

1998 Bounded Model Checking using SAT
 Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
 Clarke, Grumberg, Jha, Lu, Veith

1990s: Formal Hardware Verification in Industry: Intel, IBM, Motorola, etc.

10^5 10^{100} 10^{1000}
Model Checking since 1981

1981 Clarke / Emerson: CTL Model Checking
 Sifakis / Quielle
1982 EMC: Explicit Model Checker
 Clarke, Emerson, Sistla

1990 Symbolic Model Checking
 Burch, Clarke, Dill, McMillan
1992 SMV: Symbolic Model Verifier
 McMillan

1998 Bounded Model Checking using SAT
 Biere, Clarke, Zhu
2000 Counterexample-guided Abstraction Refinement
 Clarke, Grumberg, Jha, Lu, Veith
Grand Challenge: Model Check Software!

What makes Software Model Checking different?
What Makes Software Model Checking Different?

- Large/unbounded base types: int, float, string
- User-defined types/classes
- Pointers/aliasing + unbounded #’s of heap-allocated cells
- Procedure calls/recursion/calls through pointers/dynamic method lookup/overloading
- Concurrency + unbounded #’s of threads
What Makes Software Model Checking Different?

- Templates/generics/include files
- Interrupts/exceptions/callbacks
- Use of secondary storage: files, databases
- Absent source code for: libraries, system calls, mobile code
- Esoteric features: continuations, self-modifying code
- Size (e.g., MS Word = 1.4 MLOC)
Grand Challenge: Model Check Software!

Early attempts in the 1980s failed to scale.

2000s: renewed interest / demand:
Java Pathfinder: NASA Ames
SLAM: Microsoft
Bandera: Kansas State
BLAST: Berkeley

... SLAM shipped to Windows device driver developers.

In general, these tools are unable to handle complex data structures and concurrency.
Counterexample-Guided Abstraction Refinement

Abstraction maps classes of similar memory states to single abstract memory states.

+ Model size drastically reduced.

- Invalid counterexamples possible.
The MAGIC Tool:
Counterexample-Guided Abstraction Refinement

C Program

Abstraction

Abstraction Guidance

Improved Abstraction Guidance

Abstraction Refinement

Abstract Model

Verification

System OK

Yes

Counterexample Valid?

No

Valid?

No

Yes
CBMC: Embedded Systems Verification

- Method: Bounded Model Checking
- Implemented GUI to facilitate tech transfer
- Applications:
 - Part of train controller from GE
 - Cryptographic algorithms (DES, AES, SHS)
 - C Models of ASICs provided by nVidia
Session 2

Formal Analysis: In the security context
Formal Methods

• Dolev\&Yao first formalize N&S problem in early 80s
 – Public key decryption: \(|\| M \|_{K_A} \|_{K_A^{-1}} = M\)
 – Their work now widely recognised, but at the time, few proof techniques, and little applied

• In 1987, Burrows, Abadi and Needham (BAN) propose a systematic rule-based logic for reasoning about protocols
 – If P believes that he shares a key K with Q, and sees the message M encrypted under K, then he will believe that Q once said M
 – If P believes that the message M is fresh, and also believes that Q once said M, then he will believe that Q believes M
 – Incomplete, but useful; hugely influential
We assume that an intruder can interpose a computer on all communication paths, and thus can alter or copy parts of messages, replay messages, or emit false material. While this may seem an extreme view, it is the only safe one when designing authentication protocols.

Needham and Schroeder CACM (1978)

1978: N&S propose authentication protocols for “large networks of computers”
1981: Denning and Sacco find attack found on N&S symmetric key protocol
1983: Dolev and Yao first formalize secrecy properties wrt N&S threat model, using formal algebra
1987: Burrows, Abadi, Needham invent authentication logic; incomplete, but useful
1994: Ylonen invents SSH; holes in v1, v2, but v3 fixes these, very widely deployed
1995: Lowe finds insider attack on N&S asymmetric protocol; rejuvenates interest in FMs
1990s: Many FMs now developed; several deliver both accuracy and automation
2005: Cervesato et al find same insider attack as Lowe on proposed public-key Kerberos
Job Done?

• After intense effort on symbolic reasoning, there are now several techniques for automatically proving properties of protocols represented within a symbolic, algebraic model – eg Athena, TAPS, ProVerif, FDR, AVISPA, etc

• Moreover, many of the unwarranted Dolev Yao abstractions (eg that message length is unobservable) are being addressed by relating symbolic techniques to the probabilistic computational models used by cryptographers – See the proceedings of the *Formal and Computational Cryptography* workshops, for example
The trouble is

• While practitioners are typically happy for researchers to write formal models of their natural language specifications, and to apply design principles and formal tools, they are reluctant to do so themselves.

• Specs are always refined by implementation experience, so absolute correctness (at least of V1) is not a goal
 – Timely agreement is more important.

• So specs tend to be partial and ambiguous.
• Implementation code is the closest we get to a formal description of most protocols.

• Hence, we need to learn from other areas of verification, and build tools to analyse code.
From Model to Code

• Many formalisms for crypto protocols (including those based on process algebra and process calculi) amount to small programming languages

• Several tools have successfully demonstrated the idea:
 – CAPSL: Muller and Millen (2001)
 – Apparently, the resulting code does not interoperate with other implementations

• But this amounts to growing a formal model into a full programming language, building a compiler, educating developers and so on.
From Code to Model

• Many code analysis tools can detect security issues, such as buffer overruns, but tools to extract D&Y models from code are comparatively new

• Bhargavan, Fournet, and Gordon (CCS’04) extracted verifiable pi-calculus models from XML policies configuring some WS-Security protocols
 – First extraction of D&Y models from implementation files

• Goubault-Larrecq and Parrennes (VMCAI’05) did first tool to extract D&Y models from the source code (in C) of a crypto protocol
 – Based on a pointer analysis they extract a Horn clause model suitable for analysis by other tools eg SPASS
 – They analyse one of two roles in the NSL protocol
Correctness vs Security

• Program or system correctness: program satisfies specification
 – For reasonable input, get reasonable output

• Program or system security: program properties preserved in face of attack
 – For unreasonable input, output not completely disastrous

• Main differences
 – Active interference from adversary
 – Refinement techniques may fail
 • Abstraction is very difficult to achieve in security: what if the adversary operates below your level of abstraction?
Security Analysis

1. Model system
2. Model adversary
3. Identify security properties
4. See if properties preserved under attack

• Result
 – Under given assumptions about system, no attack of a certain form will destroy specified properties
 – There is no “absolute” security

Theme #1: there are many notions of what it means for a protocol to be “secure”

Theme #2: there are many ways of looking for security flaws
Theme #1: Protocols and Properties

• Authentication
 – Needham-Schroeder, Kerberos

• Key establishment
 – SSL/TLS, IPSec protocols (IKE, JFK, IKEv2)

• Secure group protocols
 – Group Diffie-Hellman, CLIQUES, key trees and graphs

• Anonymity
 – MIX, Onion routing, Mixmaster and Mixminion

• Electronic payments, wireless security, fair exchange, privacy…

Some of these are excellent topics for a project or the paper-reading assignment.
Theme #2: Formal Analysis Methods

• Focus on special-purpose security applications
 – Some techniques are very different from those used in hardware verification
 – In all cases, the main difficulty is modeling the attacker

• Simple, mechanical models of the attacker
Variety of Tools and Techniques

- Explicit finite-state checking
 - Murϕ model checker
- Infinite-state symbolic model checking
 - SRI constraint solver
- Process algebras
 - Applied pi-calculus

- Secrecy
- Authentication
- Authorization

- Anonymity
- Fairness

- Probabilistic model checking
 - PRISM probabilistic model checker
- Game-based verification
 - MOCHA model checker
Example: Needham-Schroeder

• Very (in)famous example
 – Appeared in a 1979 paper
 – Goal: authentication in a network of workstations
 – In 1995, Gavin Lowe discovered unintended property while preparing formal analysis using FDR system

• Background: public-key cryptography
 – Every agent A has a key pair K_a, K_a^{-1}
 – Everybody knows public key K_a and can encrypt messages to A with it (we’ll use $\{m\}_{K_a}$ notation)
 – Only A knows secret key K_a^{-1}, therefore, only A can decrypt messages encrypted with K_a
A’s reasoning:
The only person who could know NonceA is the person who decrypted 1st message. Only B can decrypt message encrypted with Kb. Therefore, B is on the other end of the line. B is authenticated!

B’s reasoning:
The only way to learn NonceB is to decrypt 2nd message. Only A can decrypt 2nd message. Therefore, A is on the other end. A is authenticated!

A’s identity

Fresh random number generated by A

\{ A, NonceA \} \text{Kb}

\{ NonceA, NonceB \} \text{Ka}

\{ NonceB \}

\{ NonceB \} \text{Kb}

Needham-Schroeder Public-Key Protocol
What Does This Protocol Achieve?

- Protocol aims to provide both **authentication** and **secrecy**
- After this the exchange, only A and B know Na and Nb
- Na and Nb can be used to derive a shared key
Anomoly in Needham-Schroeder

B can't decrypt this message, but he can replay it.

Evil agent B tricks honest A into revealing C's private value N_c.

C is convinced that he is talking to A!
Lessons of Needham-Schroeder

• Classic man-in-the-middle attack
• Exploits participants’ reasoning to fool them
 • A is correct that B must have decrypted \(\{A,Na\}_{Kb} \) message, but this does not mean that \(\{Na,Nb\}_{Ka} \) message came from B
 • The attack has nothing to do with cryptography!

• It is important to realize limitations of protocols
 – The attack requires that A willingly talk to adversary
 – In the original setting, each workstation is assumed to be well-behaved, and the protocol is correct!

• Wouldn’t it be great if one could discover attacks like this automatically?
Important Modeling Decisions

• How powerful is the adversary?
 – Simple replay of previous messages
 – Decompose into pieces, reassemble and resend
 – Statistical analysis, partial info from network traffic
 – Timing attacks

• How much detail in underlying data types?
 – Plaintext, ciphertext and keys
 • Atomic data or bit sequences?
 – Encryption and hash functions
 • Perfect (“black-box”) cryptography
 • Algebraic properties: $\text{encr}(x+y) = \text{encr}(x) \times \text{encr}(y)$ for RSA
 because $\text{encrypt}(k,\text{msg}) = \text{msg}^k \mod N$
Fundamental Tradeoff

- Formal models are abstract and greatly simplified
 - Components modeled as finite-state machines
 - Cryptographic functions modeled as abstract data types
 - Security property stated as unreachability of “bad” state

- Formal models are tractable…
 - Lots of verification methods, many automated

- …but not necessarily sound
 - Proofs in the abstract model are subject to simplifying assumptions which ignore some of attacker’s capabilities

- Attack in the formal model implies actual attack
Explicit Intruder Method

- Informal protocol description
 - RFC, IETF draft, research paper...
- Formal specification
- Intruder model
 - Set of rules describing what attacker can do
- Find error
- Analysis Tool
Murφ

[Dill et al.]

- Describe finite-state system
 - State variables with initial values
 - Transition rules for each protocol participant
 - Communication by shared variables
- Specify security condition as a state invariant
 - Predicate over state variables that must be true in every state reachable by the protocol
- Automatic exhaustive state enumeration
 - Can use hash table to avoid repeating states
- Research and industrial protocol verification
Making the Model Finite

• Two sources of infinite behavior
 – Many instances of participants, multiple runs
 – Message space or data space may be infinite

• Finite approximation
 – Assume finite number of participants
 • For example, 2 clients, 2 servers
 • Mur_ϕ is scalable: can choose system size parameters
 – Assume finite message space
 • Represent random numbers by constants r_1, r_2, r_3, \ldots
 • Do not allow $\text{encrypt}($encrypt(encrypt(…))))
Applying Mur$^\Phi$ to Security Protocols

• Formulate the protocol
 – Define a datatype for each message format
 – Describe finite-state behavior of each participant
 • If received message M3, then create message M4, deposit it in the network buffer, and go to state WAIT
 – Describe security condition as state invariant

• Add adversary
 – Full control over the “network” (shared buffer)
 – Nondeterministic choice of actions
 • Intercept a message and split it into parts; remember parts
 • Generate new messages from observed data and initial knowledge (e.g., public keys)
const
 NumInitiators: 1; -- number of initiators
 NumResponders: 1; -- number of responders
 NumIntruders: 1; -- number of intruders
 NetworkSize: 1; -- max. outstanding msgs in network
 MaxKnowledge: 10; -- number msgs intruder can remember

type
 InitiatorId: scalarset (NumInitiators);
 ResponderId: scalarset (NumResponders);
 IntruderId: scalarset (NumIntruders);

 AgentId: union {InitiatorId, ResponderId, IntruderId};
MessageType : enum {
 M_NonceAddress,
 M_NonceNonce,
 M_Nonce
}

Message : record
 source: AgentId;
 dest: AgentId;
 key: AgentId;
 mType: MessageType;
 nonce1: AgentId;
 nonce2: AgentId;
end;

-- types of messages
-- \{Na, A\}Kb nonce and addr
-- \{Na,Nb\}Ka two nonces
-- \{Nb\}Kb one nonce
Needham-Schroeder in Murφ (3)

-- intruder i sends recorded message
ruleset i: IntruderId do -- arbitrary choice of
 choose j: int[i].messages do -- recorded message
ruleset k: AgentId do -- destination
 rule "intruder sends recorded message"
 !ismember(k, IntruderId) & -- not to intruders
 multisectcount (l:net, true) < NetworkSize
 $$\Rightarrow$$
 var outM: Message;
 begin
 outM := int[i].messages[j];
 outM.source := i;
 outM.dest := k;
 multisectadd (outM, net);
 end; end; end; end;
Game-Based Verification of Security Protocols
Alternating Transition Systems

• Game variant of Kripke structures

• Start by defining state space of the protocol
 – \(\Pi \) is a set of propositions
 – \(\Sigma \) is a set of players
 – \(Q \) is a set of states
 – \(Q_0 \subseteq Q \) is a set of initial states
 – \(\pi: Q \rightarrow 2^\Pi \) maps each state to the set of propositions that are true in the state

• So far, this is very similar to Mur\(\varphi \)
Transition Function

- $\delta: Q \times \Sigma \rightarrow 2^Q$ maps a state and a player to a nonempty set of choices, where each choice is a set of possible next states
 - When the system is in state q, each player chooses a set $Q_a \in \delta(q,a)$
 - The next state is the intersection of choices made by all players $\bigcap_{a \in \Sigma} \delta(q,a)$
 - The transition function must be defined in such a way that the intersection contains a unique state
- Informally, a player chooses a set of possible next states, then his opponents choose one of them
Example: Two-Player ATS

$\Sigma = \{\text{Alice, Bob}\}$

- $p \land q$
- $p \land \neg q$
- $\neg p \land q$
- $\neg p \land \neg q$

A’s choices

B’s choices
Example: Computing Next State

\[\Sigma = \{\text{Alice, Bob}\} \]

If A chooses this set...

...B can choose either state
Alternating-Time Temporal Logic

- Propositions $p \in \Pi$
- $\neg \varphi$ or $\varphi_1 \lor \varphi_2$ where $\varphi, \varphi_1, \varphi_2$ are ATL formulas
- $\langle\langle A\rangle\rangle \Box \varphi$, $\langle\langle A\rangle\rangle \square \varphi$, $\langle\langle A\rangle\rangle \varphi_1 U \varphi_2$ where $A \subseteq \Sigma$ is a set of players, $\varphi, \varphi_1, \varphi_2$ are ATL formulas
 - These formulas express the ability of coalition A to achieve a certain outcome
 - \Box, \square, U are standard temporal operators (similar to what we saw in PCTL)
- Define $\langle\langle A\rangle\rangle \Diamond \varphi$ as $\langle\langle A\rangle\rangle \text{true} U \varphi$
Strategies in ATL

• A strategy for a player $a \in \Sigma$ is a mapping $f_a: Q^+ \rightarrow 2^Q$ such that for all prefixes $\lambda \in Q^*$ and all states $q \in Q$, $f_a(\lambda \cdot q) \in \delta(q, a)$
 – For each player, strategy maps any sequence of states to a set of possible next states

• Informally, the strategy tells the player in each state what to do next
 – Note that the player cannot choose the next state. He can only choose a set of possible next states, and opponents will choose one of them as the next state.
Temporal ATL Formulas (I)

• $\langle\langle A \rangle\rangle \Box \varphi$ iff there exists a set F_a of strategies, one for each player in A, such that for all future executions $\lambda \in \text{out}(q,F_a)$ φ holds in first state $\lambda[1]$
 – Here $\text{out}(q,F_a)$ is the set of all future executions assuming the players follow the strategies prescribed by F_a, i.e., $\lambda=q_0q_1q_2... \in \text{out}(q,F_a)$ if $q_0=q$ and $\forall i \ q_{i+1} \in \bigcap_{a \in A} f_a(\lambda[0,i])$

• Informally, $\langle\langle A \rangle\rangle \Box \varphi$ holds if coalition A has a strategy such that φ always holds in the next state
Temporal ATL Formulas (II)

- \(\langle A \rangle \square \varphi\) iff there exists a set \(F_a\) of strategies, one for each player in \(A\), such that for all future executions \(\lambda \in \text{out}(q,F_a)\) \(\varphi\) holds in all states
 - Informally, \(\langle A \rangle \square \varphi\) holds if coalition \(A\) has a strategy such that \(\varphi\) holds in every execution state

- \(\langle A \rangle \Diamond \varphi\) iff there exists a set \(F_a\) of strategies, one for each player in \(A\), such that for all future executions \(\lambda \in \text{out}(q,F_a)\) \(\varphi\) eventually holds in some state
 - Informally, \(\langle A \rangle \Diamond \varphi\) holds if coalition \(A\) has a strategy such that \(\varphi\) is true at some point in every execution
Protocol Description Language

- **Guarded command language**

- **Each action described as**

 - **guard** is a boolean predicate over state variables
 - **command** is an update predicate

 \[
 \begin{align*}
 &\text{[]} \text{SigM1B} \land \neg \text{SendM2} \land \neg \text{StopB} \rightarrow \text{SendMrB1'} := \text{true};
 \end{align*}
 \]
MOCHA Model Checker

• Model checker specifically designed for verifying alternating transition systems
 – System behavior specified as guarded commands
 • Essentially the same as PRISM input, except that transitions are nondeterministic (as in in Murφ), not probabilistic
 – Property specified as ATL formula

• Slang scripting language
 – Makes writing protocol specifications easier

• Try online implementation!
Formal verification: The AES story
Advanced Encryption Standard

• Adopted by National Institute of Standards and Technology (NIST) on May 26, 2002.
• simple design
• high speed algorithm
• low memory costs.
• Symmetric block cipher
• byte-oriented operations
• Blocksize - 128 bits, 192 bits or 256 bits
Key-Block-Round Combinations for AES

<table>
<thead>
<tr>
<th></th>
<th>Key Length ((Nk \text{ words}))</th>
<th>Block Size ((Nb \text{ words}))</th>
<th>Number of Rounds ((Nr))</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-128</td>
<td>4</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>AES-192</td>
<td>6</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>AES-256</td>
<td>8</td>
<td>4</td>
<td>14</td>
</tr>
</tbody>
</table>
Key Expansion

state = input

AddRoundKey

SubBytes
ShiftRows
MixColumns
AddRoundKey

9 times

SubBytes
ShiftRows
AddRoundKey

output = state

AES-128
AES Experience 1: Verification using Reverse Synthesis

Diagram:

- Original Specification
- Implication Proof
- Extracted Specification
- Verification Argument
- Development Activities
- Annotation
- Implementation proof
- Implementation
- Reverse Synthesis
Reverse Synthesis

Specification Extraction using Reverse Synthesis

• Architectural and direct mapping
• Component reuse
• Model synthesis
Refactoring

Refactor a program

• to reduce complexity
• reduce its efficiency
• does not change its functionality
• Two stages to use refactoring-
 – Implementation proof
 – Implication Proof
Implication Proof

Extracted Specification \(\rightarrow \) Original Specification

- \(\text{Pre}_{\text{Original}} \Rightarrow \text{Pre}_{\text{Extracted}} \)
- \(\text{Post}_{\text{Extracted}} \Rightarrow \text{Post}_{\text{Original}} \)
Verification of the AES Implementation

Official FIPS specification into a formal specification in PVS

Development Activities

Verification Argument

Implementation proof

Reverse Synthesis

ANSI C implementation into SPARK Ada
Refactoring for Implication proof

• Identify optimizations
• template defining the refactoring transformation to reverse the optimization
• proved them to be semantics-preserving
• applied the transformations
Refactoring process

Optimizations in AES to create implementation

- Loop unrolling
- Word packing
- Table lookup
- Function inlining
Cipher(word in[4], word out[4], word w[4*(11)])
Begin
 word state[4]
 state = in
 AddRoundKey(state, w[0, 3])
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[4,7])
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[8,11])
 ...
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[40,43])
out = state
end

Cipher(word in[4], word out[4], word w[4*(11)])
begin
 byte state[4,Nb]
 state = in
 AddRoundKey(state, w[0, 3])
 for round = 1 step 1 to 9
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*4, (round+1)*4-1])
 end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[40,43])
 out = state
 end
Cipher(word in[4], word out[4], word w[4*(11)])
begin
 word state[4]
 state = in
 AddRoundKey(state, w[0, 3])
for round = 1 step 1 to Nr−1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*4, (round+1)*4-1])
end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[40,43])
out = state
end

Cipher(byte in[4*4], byte out[4*4], word w[4*(11)])
begin
 byte state[4,4]
 state = in
 AddRoundKey(state, w[0, 3])
for round = 1 step 1 to 9
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*4, (round+1)*4-1])
end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[40,43])
out = state
end
Table lookup

SubBytes(byte state [4*4])
{
 for i = 0 to 15
 State[i] = SBox[i]
}

SubBytes(byte state [4*4])
{
 for i = 0 to 15
 State[i] = compute(i);
}
Function inlining

- Finding cloned code fragments - removed replicated or similar proof obligations in the implementation proof.
- Aligned the code structure
- Implication proof was easier to be constructed.
- Factored nine specified functions, each of which was quite small.
- Source code size increased
- Conceptual complexity was reduced
Implementation Proof

- SPARK toolset
Specification Extraction

- PVS specification
Implication Proof

- PVS theorem prover
AES Experience 2: Verifying Functional Equivalence of two AES Implementations

• For low level software the following do not perform well
 – data-slicing
 – data-abstraction
• Bit-sensitive techniques provide a good alternative.
 – Bounded Model
• The usual problem is that bit-sensitive verification approaches
 – Do not scale well
 – State-space explosion
CBMC

CBMC is a bounded software model checking tool for ANSI-C programs.

- Memory locations - modelled by finite bit-vectors.
- The resulting program has a finite number of statements.
- Resulting stateless bit-vector formulas to CNF
- Boolean satisfiability decision procedure
 - Safety properties hold or not using Minisat2
CBMC

• built-in checks for several common runtime errors.
• assert statements
• Assume statement
• In order to check equivalence of two C functions
 – wrapper program.
 – Input parameters - equal.
 – outputs - checked for equivalence
Equivalence of two implementations

- mapping inputs from one implementation to the other
- In cases of AES where the standard defines values of constants
 - merge tables and arrays from both implementations
 - the computation of the look-up done once
Equivalence of two implementations

• Verification of three parts of AES independently

• Key Generation
 – Mapping between different bits of round key array
 – round keys generated is input for both implementations

Assert (fkey[r*4 +j] == res)
Equivalence of two implementations

- **Encryption**
 - Mapping of input encoding
 - one round of encryption for both algorithms.
 - outputs should be equal.
 - number of rounds is iteratively increased to up to 4
 - an inductive schema was used:
 - The base - get equal inputs
 - The inductive step - equal up to the i-th round → produce equal results in round i+1.

<table>
<thead>
<tr>
<th>Reference impl.</th>
<th>Mike Scott’s impl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 01 02 03</td>
<td>0 0 0 0 0 1 11 1 1 1 1 2 1 3 2 0 ...</td>
</tr>
<tr>
<td>10 11 12 13</td>
<td>0 1 2 3 0 11 2 1 3 0</td>
</tr>
<tr>
<td>20 21 22 23</td>
<td>0 1 2 3 0 11 2 1 3 0</td>
</tr>
<tr>
<td>30 31 32 33</td>
<td>0 1 2 3 0 11 2 1 3 0</td>
</tr>
</tbody>
</table>

8 bit type
Equivalence of two implementations

- Decryption
 - structural dissimilarity
 - Generation of backward round keys - expensive
AES Experience 3: The CEGAR attempt

- Predicate Abstraction Reminder
 - Abstracts data by keeping track of certain predicates
 - Each predicate given a Boolean variable in abstract model
 - $M \models p \rightarrow M' \models p$
Counterexample Guided Abstraction and Refinement Loop (CEGAR)

Analysis & Refinement

Predicate Abstraction

Model check

Static Analysis

C programs

Property Monitor

F-Soft

Verified code
Counterexample Guided Abstraction and Refinement Loop (CEGAR)
Counterexample Guided Abstraction and Refinement Loop (CEGAR)

Analysis & Refinement

C programs

Static Analysis

Predicate Abstraction

Model check

Verified code

Dynamic Analysis

Real

Spurious

Counter example

Property Monitor
Counterexample Guided Abstraction and Refinement Loop (CEGAR)

- C programs
- Static Analysis
 - Predicate Abstraction
 - Model check
 - Dynamic Invariants
 - Static Invariants
 - Simulate on original C program
- Static Monitor
 - Real
 - Spurious
- Dynamic Analysis
 - Counterexample
Current Research

• Dynamic Invariant based verification of AES
 – Using Daikon to generate invariants
 • Daikon uses machine learning to generate invariants from program traces
 • Invariants are expressed as preconditions and post-conditions on procedures
 – Using SATABS for CEGAR using the invariants generated by Daikon
Backup Slides
If (a[1] < 0 || a[0]%1000) {
 convert(a);
}

sort(a);
if (a[0] < 0)
 printf("error");
assert(a[0] >= 0);

Simulate on original C program
SATABS - 96 iterations
Failed to verify.
Example-Static invariants

```c
if ( a[1] < 0 || a[0] % 1000 )
{
    convert(a);
}

sort(a);
if ( a[0] < 0 )
    printf("error");
```

Static invariants:
- \(a[1] \geq 0 \)
- \(a[\ast] \geq 0 \)
- \(a[..] \) sorted by \(> \)
If (a[1] < 0 || a[0] % 1000)
{
 convert(a);
}

sort(a);
if (a[0] < 0)
 printf("error");

size(a[..]) == 5 {1+}
a[..] >= orig(a[..]) (elementwise) {0.9995+}
a[..] % orig(a[..]) == 0 (elementwise) {1+}
size(a[..]) == 5 {1+}
a[..] sorted by > {0.9995+}
AES Algorithm

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)],Nk)

Cipher(byte in[4*Nb],byte out[4*Nb],word w[Nb*(Nr+1)])
begin
 byte state[4,Nb]
 state = in
 AddRoundKey(state, w[0, Nb-1])
 for round = 1 step 1 to Nr-1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state,w[round*Nb,(round+1)*Nb-1])
 end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 out = state
end
AES Algorithm

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
 byte state[4,Nb]
 state = in
 AddRoundKey(state, w[0, Nb-1])
 for round = 1 step 1 to Nr-1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 out = state
end
AES Algorithm - Key Expansion

SubWord()
- four-byte input word
- applies the S-box

RotWord()
- \([a_0,a_1,a_2,a_3] \rightarrow [a_1,a_2,a_3,a_0]\).

Rcon[i]
- \([x_{i-1},\{00\},\{00\},\{00\}],\)
AES Algorithm - Key Expansion

for i ← 0 to 3
do w[i] ← (key[4i], key[4i+1], key[4i+2], key[4i+3])
for i ← 4 to 43
 temp ← w[i-1]
 if i ≡ 0 (mod 4)
 then temp ← SubWord(RotWord(temp)) +Rcon[i/4]
 w[i] ← w[i-4] +temp
return(w[0]..w[43])
AES Algorithm

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)],Nk)

Cipher(byte in[4*Nb],byte out[4*Nb],word w[Nb*(Nr+1)])
begin
 byte state[4,Nb]
 state = in
 AddRoundKey(state, w[0, Nb-1])
 for round = 1 step 1 to Nr-1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 out = state
end
AES Algorithm

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)],Nk)

Cipher(byte in[4*Nb],byte out[4*Nb],word w[Nb*(Nr+1)])
begin
 byte state[4,Nb]
 state = in
 AddRoundKey(state, w[0, Nb-1])
 for round = 1 step 1 to Nr-1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 out = state
end
AES Algorithm - AddRoundKey

State

<table>
<thead>
<tr>
<th></th>
<th>41</th>
<th>45</th>
<th>49</th>
<th>4D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>42</td>
<td>46</td>
<td>4A</td>
<td>4E</td>
</tr>
<tr>
<td>1</td>
<td>43</td>
<td>47</td>
<td>4B</td>
<td>4F</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>48</td>
<td>4C</td>
<td>50</td>
</tr>
</tbody>
</table>

Expanded Key

w[0] → w[4]

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>22</th>
<th>33</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>55</td>
<td>66</td>
<td>77</td>
<td>88</td>
</tr>
<tr>
<td>1</td>
<td>99</td>
<td>00</td>
<td>AA</td>
<td>BB</td>
</tr>
<tr>
<td>2</td>
<td>CC</td>
<td>DD</td>
<td>EE</td>
<td>FF</td>
</tr>
</tbody>
</table>

After AddRoundKey

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>10</th>
<th>D0</th>
<th>81</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60</td>
<td>20</td>
<td>4A</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td>70</td>
<td>30</td>
<td>E1</td>
<td>A1</td>
</tr>
<tr>
<td>2</td>
<td>00</td>
<td>C0</td>
<td>F7</td>
<td>AF</td>
</tr>
</tbody>
</table>
AES Algorithm

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
 byte state[4,Nb]
 state = in
 AddRoundKey(state, w[0, Nb-1])
 for round = 1 step 1 to Nr-1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 out = state
end
AES Algorithm - SubBytes

- SubBytes is the SBOX for AES
- For every value of b there is a unique value for b’
 - It is faster to use a substitution table (and easier).
AES Algorithm - SubBytes

State

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>10</td>
<td>D0</td>
<td>81</td>
</tr>
<tr>
<td>60</td>
<td>20</td>
<td>4A</td>
<td>93</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>E1</td>
<td>A1</td>
</tr>
<tr>
<td>00</td>
<td>C0</td>
<td>F7</td>
<td>AF</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
Sbox(50) & \quad Sbox(10) & \quad Sbox(D0) & \quad Sbox(81) \\
Sbox(60) & \quad Sbox(20) & \quad Sbox(4A) & \quad Sbox(93) \\
Sbox(70) & \quad Sbox(30) & \quad Sbox(E1) & \quad Sbox(A1) \\
Sbox(00) & \quad Sbox(C0) & \quad Sbox(F7) & \quad Sbox(AF)
\end{align*}
\]

\[
b'_i = b_i \oplus b_{(i+4) \mod 8} \oplus b_{(i+5) \mod 8} \oplus b_{(i+6) \mod 8} \oplus b_{(i+7) \mod 8} \oplus c_i
\]

\[
= \{01100011\}
\]
AES Algorithm

KeyExpansion(byte key[4*Nk],word w[Nb*(Nr+1)],Nk)

Cipher(byte in[4*Nb],byte out[4*Nb],word w[Nb*(Nr+1)])
begin
 byte state[4,Nb]
 state = in
 AddRoundKey(state, w[0, Nb-1])
 for round = 1 step 1 to Nr-1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 out = state
end
AES Algorithm - ShiftRows

\[S_{r,0} S_{r,1} S_{r,2} S_{r,3} \]

\[S'_{r,0} S'_{r,1} S'_{r,2} S'_{r,3} \]

\[
\begin{array}{cccc}
S_{0,0} & S_{0,1} & S_{0,2} & S_{0,3} \\
S_{1,0} & S_{1,1} & S_{1,2} & S_{1,3} \\
S_{2,0} & S_{2,1} & S_{2,2} & S_{2,3} \\
S_{3,0} & S_{3,1} & S_{3,2} & S_{3,3} \\
\end{array}
\]

\[
\begin{array}{cccc}
S'_{0,0} & S'_{0,1} & S'_{0,2} & S'_{0,3} \\
S'_{1,1} & S'_{1,2} & S'_{1,3} & S'_{1,0} \\
S'_{2,2} & S'_{2,3} & S'_{2,0} & S'_{2,1} \\
S'_{3,3} & S'_{3,0} & S'_{3,1} & S'_{3,2} \\
\end{array}
\]
AES Algorithm - ShiftRows

- Simple routine which performs a left shift rows 1, 2 and 3 by 1, 2 and 3 bytes respectively

<table>
<thead>
<tr>
<th>Before Shift Rows</th>
<th>After Shift Rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>CA</td>
</tr>
<tr>
<td>D0</td>
<td>B7</td>
</tr>
<tr>
<td>51</td>
<td>04</td>
</tr>
<tr>
<td>63</td>
<td>BA</td>
</tr>
</tbody>
</table>

53	CA	70	0C
B7	D6	DC	D0
F8	32	51	04
79	63	BA	68
AES Algorithm

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
 byte state[4,Nb]
 state = in
 AddRoundKey(state, w[0, Nb-1])
 for round = 1 step 1 to Nr-1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 out = state
end
AES Algorithm - MixColumns

\[
\begin{array}{cccc}
S_{0,0} & S_{0,2} & S_{0,3} \\
S_{1,0} & S_{1,2} & S_{1,3} \\
S_{2,0} & S_{2,2} & S_{2,3} \\
S_{3,0} & S_{3,2} & S_{3,3} \\
\end{array}
\]

\[
\begin{array}{cccc}
S_{0,0}' & S_{0,2}' & S_{0,3}' \\
S_{1,0}' & S_{1,2}' & S_{1,3}' \\
S_{2,0}' & S_{2,2}' & S_{2,3}' \\
S_{3,0}' & S_{3,2}' & S_{3,3}' \\
\end{array}
\]
AES Algorithm - MixColumns

\[
\begin{bmatrix}
 a'_0 \\
a'_1 \\
a'_2 \\
a'_3
\end{bmatrix} =
\begin{bmatrix}
 02 & 03 & 01 & 01 \\
 01 & 02 & 03 & 01 \\
 01 & 01 & 02 & 03 \\
 03 & 01 & 01 & 02
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
a_1 \\
a_2 \\
a_3
\end{bmatrix}
\]

\[
\begin{align*}
a'_0 &= 2a_0 + 3a_1 + a_2 + a_3 \\
a'_1 &= a_0 + 2a_1 + 3a_2 + a_3 \\
a'_2 &= a_0 + a_1 + 2a_2 + 3a_3 \\
a'_3 &= 3a_0 + a_1 + a_2 + 2a_3
\end{align*}
\]
AES Algorithm

KeyExpansion(byte key[4*Nk], word w[Nb* (Nr+1)], Nk)

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
 byte state[4,Nb]
 state = in
 AddRoundKey(state, w[0, Nb-1])
 for round = 1 step 1 to Nr1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 end for
 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 out = state
end
AES Algorithm

Encryption

1. RoundKey → AddRoundKey
2. SubBytes
3. ShiftRows
4. MixColumns
5. AddRoundKey

Repeat Nr - 1 Round

Last Round

RoundKey → AddRoundKey → SubBytes → ShiftRows → MixColumns → AddRoundKey

CipherText

Decryption

1. RoundKey* → AddRoundKey
2. InvShiftRows
3. InvSubBytes
4. InvMixColumns
5. InvShiftRows
6. InvSubBytes
7. AddRoundKey

Repeat Nr - 1 Round

Last Round

RoundKey* → AddRoundKey → InvSubBytes → InvMixColumns → InvShiftRows → InvShiftRows

Plain Text

* RoundKey Added in reverse order
Slide sources

• Edmund Clarke’s course:
 http://www.cs.cmu.edu/~emc/15414-f11/lecture/

• Vitaly Shmatikov’s course:
 http://www.cs.utexas.edu/~shmat/courses/cs395t_fall04/cs395t_home.html

• Tom Chotia’s course:
 http://www.cs.bham.ac.uk/~tpc/cwi/Teaching/index.html