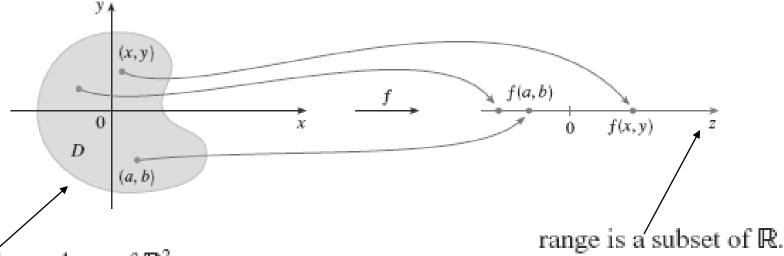
Functions of Several Variables

Definition A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set D is the **domain** of f and its **range** is the set of values that f takes on, that is, $\{f(x, y) \mid (x, y) \in D\}$.

We often write z = f(x, y) to make explicit the value taken on by f at the general point (x, y). The variables x and y are **independent variables** and z is the **dependent variable**.



domain is a subset of \mathbb{R}^2

EXAMPLE 1 For each of the following functions, evaluate f(3, 2) and find and sketch the domain.

(a)
$$f(x, y) = \frac{\sqrt{x + y + 1}}{x - 1}$$

(b)
$$f(x, y) = x \ln(y^2 - x)$$

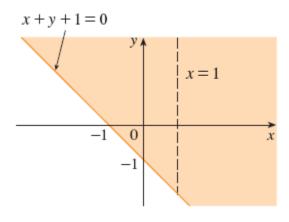


FIGURE 2

Domain of
$$f(x, y) = \frac{\sqrt{x + y + 1}}{x - 1}$$

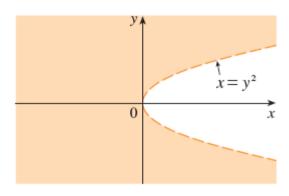


FIGURE 3

Domain of
$$f(x, y) = x \ln(y^2 - x)$$

Graphs

Another way of visualizing the behavior of a function of two variables is to consider its graph.

Definition If f is a function of two variables with domain D, then the **graph** of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.

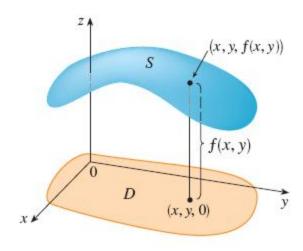
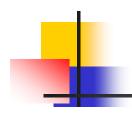


FIGURE 5



EXAMPLE 5 Sketch the graph of the function f(x, y) = 6 - 3x - 2y.

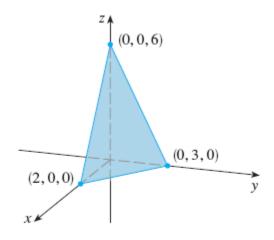
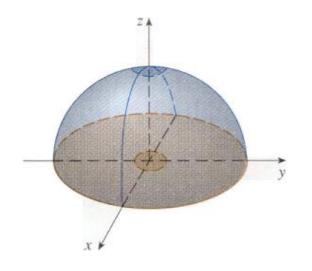
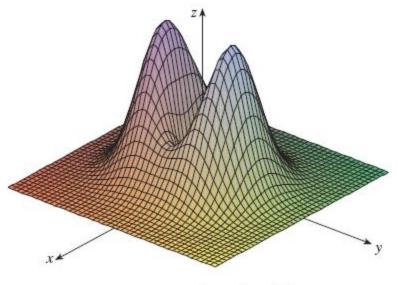


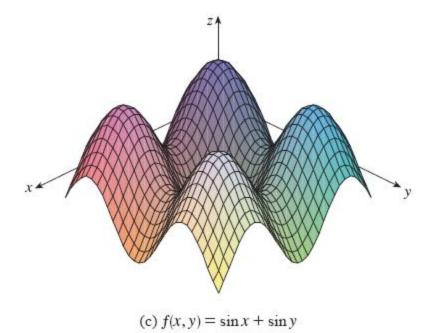
FIGURE 6

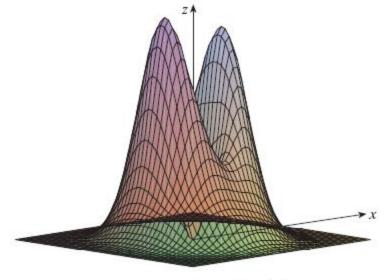
EXAMPLE 6 Sketch the graph of
$$g(x, y) = \sqrt{9 - x^2 - y^2}$$
.



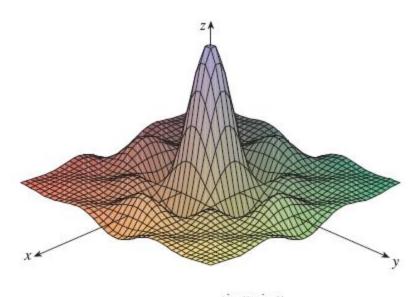


(a)
$$f(x, y) = (x^2 + 3y^2)e^{-x^2-y^2}$$

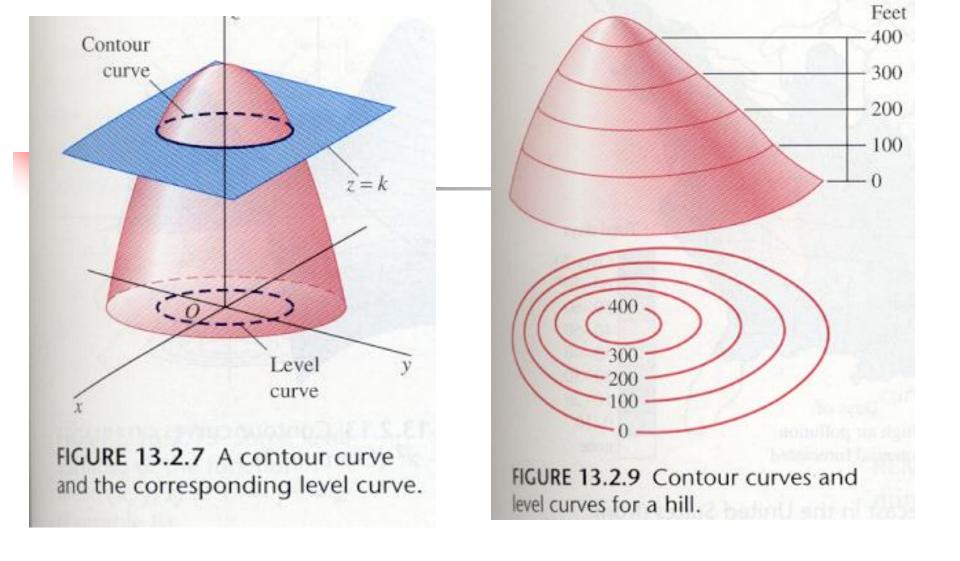




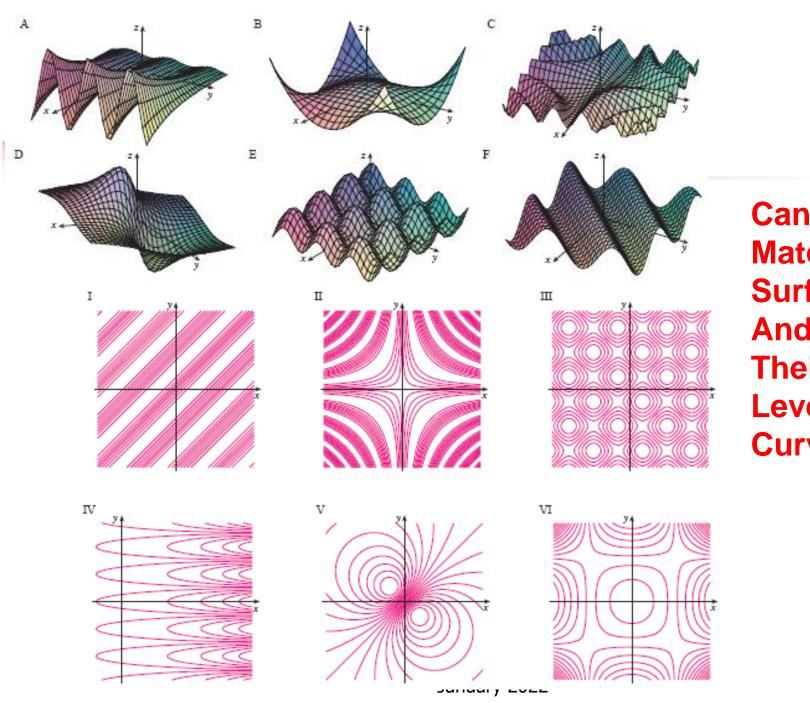
(b)
$$f(x, y) = (x^2 + 3y^2)e^{-x^2-y^2}$$



(d) $f(x, y) = \frac{\sin x \sin y}{xy}$



Definition The **level curves** of a function f of two variables are the curves with equations f(x, y) = k, where k is a constant (in the range of f).

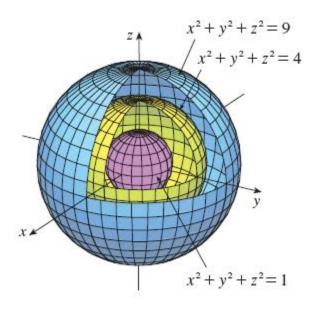


Can you
Match the
Surfaces
And
Their
Level
Curves?

Functions of Three or More Variables

A function of three variables, f, is a rule that assigns to each ordered triple (x, y, z) in a domain $D \subset \mathbb{R}^3$ a unique real number denoted by f(x, y, z). For instance, the temperature T at a point on the surface of the earth depends on the longitude x and latitude y of the point and on the time t, so we could write T = f(x, y, t).

It's very difficult to visualize a function f of three variables by its graph, since that would lie in a four-dimensional space. However, we do gain some insight into f by examining its **level surfaces**, which are the surfaces with equations f(x, y, z) = k, where k is a constant. If the point (x, y, z) moves along a level surface, the value of f(x, y, z) remains fixed.



Limits and Continuity

Let's compare the behavior of the functions

0

0.5

1.0

0.759

0.455

0.959

0.759

$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$
 and $g(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$

as x and y both approach 0 [and therefore the point (x, y) approaches the origin].

TABLE 1 Values of f(x, y)

-1.0-0.5-0.20.5 0 0.2 1.0 -1.00.455 0.759 0.829 0.841 0.8290.759 0.455 -0.50.759 0.959 0.986 0.990 0.986 0.959 0.759 -0.20.829 0.986 0.999 1.000 0.999 0.986 0.829 0.841 0.990 1.000 1.000 0.990 0.8410.2 0.829 0.999 0.999 0.986 1.000 0.986 0.829

0.990

0.841

0.986

0.829

0.959

0.759

0.759

0.455

TABLE 2 Values of g(x, y)

x y	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000
-0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
-0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0	-1.000	-1.000	-1.000		-1.000	-1.000	-1.000
0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1$$

0.986

0.829

$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
 does not exist

In general, we use the notation

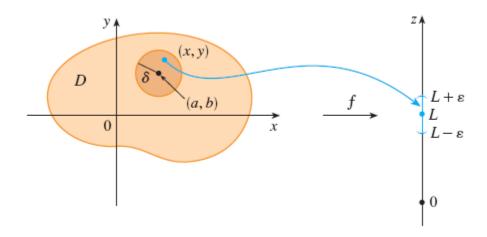
$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

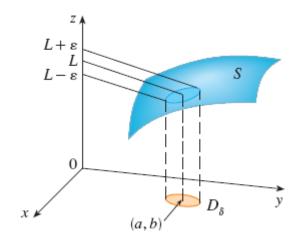
1 Definition Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the **limit of** f(x, y) as (x, y) approaches (a, b) is L and we write

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

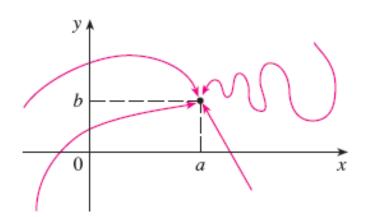
if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that

if
$$(x, y) \in D$$
 and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x, y) - L| < \epsilon$





Independence of The path



If $f(x, y) \to L_1$ as $(x, y) \to (a, b)$ along a path C_1 and $f(x, y) \to L_2$ as $(x, y) \to (a, b)$ along a path C_2 , where $L_1 \neq L_2$, then $\lim_{(x, y) \to (a, b)} f(x, y)$ does not exist.

EXAMPLE 1 Show that
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
 does not exist.

EXAMPLE 4 Find
$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$$
 if it exists.

CONTINUITY

4 Definition A function f of two variables is called continuous at (a, b) if

$$\lim_{(x, y)\to(a, b)} f(x, y) = f(a, b)$$

We say f is **continuous on** D if f is continuous at every point (a, b) in D.

A polynomial function of two variables (or polynomial, for short) is a sum of terms of the form cx^my^n , where c is a constant and m and n are nonnegative integers. A rational function is a ratio of polynomials. For instance,

$$f(x, y) = x^4 + 5x^3y^2 + 6xy^4 - 7y + 6$$

is a polynomial, whereas

$$g(x, y) = \frac{2xy + 1}{x^2 + y^2}$$

is a rational function.

Examine the continuity at the origin of the following functions:

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2} \qquad g(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

If f is defined on a subset D of \mathbb{R}^n , then $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$ means that for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that

if
$$\mathbf{x} \in D$$
 and $0 < |\mathbf{x} - \mathbf{a}| < \delta$ then $|f(\mathbf{x}) - L| < \varepsilon$

Notice that if n = 1, then $\mathbf{x} = x$ and $\mathbf{a} = a$, and $\boxed{5}$ is just the definition of a limit for functions of a single variable. For the case n = 2, we have $\mathbf{x} = \langle x, y \rangle$, $\mathbf{a} = \langle a, b \rangle$, and $|\mathbf{x} - \mathbf{a}| = \sqrt{(x - a)^2 + (y - b)^2}$, so $\boxed{5}$ becomes Definition 1. If n = 3, then $\mathbf{x} = \langle x, y, z \rangle$, $\mathbf{a} = \langle a, b, c \rangle$, and $\boxed{5}$ becomes the definition of a limit of a function of three variables. In each case the definition of continuity can be written as

$$\lim_{\mathbf{x}\to\mathbf{a}}\,f(\mathbf{x})=f(\mathbf{a})$$