Functions of Several Variables

Definition A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by $f(x, y)$. The set D is the domain of f and its range is the set of values that f takes on, that is, $\{f(x, y) \mid(x, y) \in D\}$.

We often write $z=f(x, y)$ to make explicit the value taken on by f at the general point (x, y). The variables x and y are independent variables and z is the dependent variable.

EXAMPLE 1 For each of the following functions, evaluate $f(3,2)$ and find and sketch the domain.
(a) $f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$
(b) $f(x, y)=x \ln \left(y^{2}-x\right)$

FIGURE 2
Domain of $f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$

FIGURE 3
Domain of $f(x, y)=x \ln \left(y^{2}-x\right)$

Graphs

Another way of visualizing the behavior of a function of two variables is to consider its graph.

Definition If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in \mathbb{R}^{3} such that $z=f(x, y)$ and (x, y) is in D.

FIGURE 5

FIGURE 6

EXAMPLE 6 Sketch the graph of $g(x, y)=\sqrt{9-x^{2}-y^{2}}$.

(a) $f(x, y)=\left(x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}$

(c) $f(x, y)=\sin x+\sin y$

(b) $f(x, y)=\left(x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}$

(d) $f(x, y)=\frac{\sin x \sin y}{x y}$

FIGURE 13.2.7 A contour curve and the corresponding level curve.

Definition The level curves of a function f of two variables are the curves with equations $f(x, y)=k$, where k is a constant (in the range of f).

Functions of Three or More Variables

A function of three variables, f, is a rule that assigns to each ordered triple (x, y, z) in a domain $D \subset \mathbb{R}^{3}$ a unique real number denoted by $f(x, y, z)$. For instance, the temperature T at a point on the surface of the earth depends on the longitude x and latitude y of the point and on the time t, so we could write $T=f(x, y, t)$.

It's very difficult to visualize a function f of three variables by its graph, since that would lie in a four-dimensional space. However, we do gain some insight into f by examining its level surfaces, which are the surfaces with equations $f(x, y, z)=k$, where k is a constant. If the point (x, y, z) moves along a level surface, the value of $f(x, y, z)$ remains fixed.

Let's compare the behavior of the functions

$$
f(x, y)=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}} \quad \text { and } \quad g(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

as x and y both approach 0 [and therefore the point (x, y) approaches the origin].

TABLE 1 Values of $f(x, y)$

x^{y}	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.455	0.759	0.829	0.841	0.829	0.759	0.455
-0.5	0.759	0.959	0.986	0.990	0.986	0.959	0.759
-0.2	0.829	0.986	0.999	1.000	0.999	0.986	0.829
0	0.841	0.990	1.000		1.000	0.990	0.841
0.2	0.829	0.986	0.999	1.000	0.999	0.986	0.829
0.5	0.759	0.959	0.986	0.990	0.986	0.959	0.759
1.0	0.455	0.759	0.829	0.841	0.829	0.759	0.455
$\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=1$							

TABLE 2 Values of $g(x, y)$

x	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000
-0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
-0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0	-1.000	-1.000	-1.000		-1.000	-1.000	-1.000
0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000

$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist

In general, we use the notation

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

1 Definition Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the limit of $f(x, y)$ as (x, y) approaches (a, b) is L and we write

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that

$$
\text { if } \quad(x, y) \in D \quad \text { and } \quad 0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta \quad \text { then } \quad|f(x, y)-L|<\varepsilon
$$

Independence of
 The path

If $f(x, y) \rightarrow L_{1}$ as $(x, y) \rightarrow(a, b)$ along a path C_{1} and $f(x, y) \rightarrow L_{2}$ as $(x, y) \rightarrow(a, b)$ along a path C_{2}, where $L_{1} \neq L_{2}$, then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exist.

EXAMPLE 1 Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist.

EXAMPLE 4 Find $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}$ if it exists.

CONTINUITY

4 Definition A function f of two variables is called continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

We say f is continuous on D if f is continuous at every point (a, b) in D.

A polynomial function of two variables (or polynomial, for short) is a sum of terms of the form $c x^{m} y^{n}$, where c is a constant and m and n are nonnegative integers. A rational function is a ratio of polynomials. For instance,

$$
f(x, y)=x^{4}+5 x^{3} y^{2}+6 x y^{4}-7 y+6
$$

is a polynomial, whereas

$$
g(x, y)=\frac{2 x y+1}{x^{2}+y^{2}}
$$

is a rational function.

Examine the continuity at the origin of the following functions:

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \quad g(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

5 If f is defined on a subset D of \mathbb{R}^{n}, then $\lim _{\mathbf{x} \rightarrow \mathrm{a}} f(\mathbf{x})=L$ means that for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that

$$
\text { if } \mathbf{x} \in D \quad \text { and } \quad 0<|\mathbf{x}-\mathbf{a}|<\delta \text { then }|f(\mathbf{x})-L|<\boldsymbol{\varepsilon}
$$

Notice that if $n=1$, then $\mathbf{x}=x$ and $\mathbf{a}=a$, and 5 is just the definition of a limit for functions of a single variable. For the case $n=2$, we have $\mathbf{x}=\langle x, y\rangle, \mathbf{a}=\langle a, b\rangle$, and $|\mathbf{x}-\mathbf{a}|=\sqrt{(x-a)^{2}+(y-b)^{2}}$, so 5 becomes Definition 1. If $n=3$, then $\mathbf{x}=\langle x, y, z\rangle, \mathbf{a}=\langle a, b, c\rangle$, and 5 becomes the definition of a limit of a function of three variables. In each case the definition of continuity can be written as

$$
\lim _{\mathbf{x} \rightarrow \mathrm{a}} f(\mathbf{x})=f(\mathbf{a})
$$

