THE HEAT CONDUCTION PROBLEM

Partial Derivatives

4 If f is a function of two variables, its partial derivatives are the functions f_{x} and f_{y} defined by

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

Notations for Partial Derivatives If $z=f(x, y)$, we write

$$
\begin{aligned}
& f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=f_{1}=D_{1} f=D_{x} f \\
& f_{y}(x, y)=f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} f(x, y)=\frac{\partial z}{\partial y}=f_{2}=D_{2} f=D_{y} f
\end{aligned}
$$

Rule for Finding Partial Derivatives of $z=f(x, y)$

1. To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x.
2. To find f_{y}, regard x as a constant and differentiate $f(x, y)$ with respect to y.

Find the first partial derivatives of the function.

13. $f(x, y)=3 x-2 y^{4}$
14. $f(x, y)=x^{5}+3 x^{3} y^{2}+3 x y^{4}$
15. $z=x e^{3 y}$
17. $f(x, y)=\frac{x-y}{x+y}$
18. $f(x, y)=x^{y}$
19. $w=\sin \alpha \cos \beta$
20. $f(s, t)=s t^{2} /\left(s^{2}+t^{2}\right)$
21. $f(r, s)=r \ln \left(r^{2}+s^{2}\right)$
22. $f(x, t)=\arctan (x \sqrt{t})$
23. $u=t e^{m / t}$
24. $f(x, y)=\int_{y}^{x} \cos \left(t^{2}\right) d t$

FIGURE 13.4.1 A vertical plane parallel to the $x z$-plane intersects the surface $z=f(x, y)$ in an x-curve.

FIGURE 13.4.2 An x-curve and its tangent line at P.

FIGURE 13.4.3 Projection into the $x z$-plane of the x-curve through $P(a, b, c)$ and its tangent line.

EXAMPLE 5 Suppose that the graph $z=5 x y \exp \left(-x^{2}-2 y^{2}\right)$ in Fig. 13.4.7 represents a terrain featuring two peaks (hills, actually) and two pits. With all distances measured in miles, z is the altitude above the point (x, y) at sea level in the $x y$-plane. For instance, the height of the pictured point P is $z(-1,-1)=5 e^{-3} \approx 0.2489$ (mi), about 1314 ft above sea level. We ask at what rate we climb if, starting at the point $P(-1,-1,0.2489)$, we head either due east (the positive x-direction) or due north (the positive y-direction). If we calculate the two partial derivatives of $z(x, y)$, we get

$$
\frac{\partial z}{\partial x}=5 y\left(1-2 x^{2}\right) \exp \left(-x^{2}-2 y^{2}\right) \quad \text { and } \quad \frac{\partial z}{\partial y}=5 x\left(1-4 y^{2}\right) \exp \left(-x^{2}-2 y^{2}\right)
$$

(You should check this.) Substituting $x=y=-1$ now gives

$$
\left.\frac{\partial z}{\partial x}\right|_{(-1,-1)}=5 e^{-3} \approx 0.2489 \text { and }\left.\quad \frac{\partial z}{\partial y}\right|_{(-1,-1)}=15 e^{-3} \approx 0.7468
$$

The units here are in miles per mile-that is, the ratio of rise to run in vertical miles per horizontal mile. So if we head east, we start climbing at an angle of

$$
\alpha=\tan ^{-1}(0.2489) \approx 0.2440 \quad(\mathrm{rad})
$$

about 13.98°. (See Fig. 13.4.8.) But if we head north, then we start climbing at an angle of

$$
\beta=\tan ^{-1}(0.7468) \approx 0.6415 \quad(\mathrm{rad})
$$

approximately 36.75°. (See Fig. 13.4.9.) Do these results appear to be consistent with Fig. 13.4.7?

FIGURE 13.4.7 The graph $z=5 x y \exp \left(-x^{2}-2 y^{2}\right)$.

FIGURE 13.4.8 The angle of climb in the x-direction.

FIGURE 13.4.9 The angle of climb in the y-direction.

Functions of More Than Two Variables

Partial derivatives can also be defined for functions of three or more variables. For example, if f is a function of three variables x, y, and z, then its partial derivative with respect to x is defined as

$$
f_{x}(x, y, z)=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h}
$$

and it is found by regarding y and z as constants and differentiating $f(x, y, z)$ with respect to x. If $w=f(x, y, z)$, then $f_{x}=\partial w / \partial x$ can be interpreted as the rate of change of w with respect to x when y and z are held fixed. But we can't interpret it geometrically because the graph of f lies in four-dimensional space.

In general, if u is a function of n variables, $u=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, its partial derivative with respect to the i th variable X_{i} is

$$
\begin{gathered}
\frac{\partial u}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i-1}, x_{i}+h, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)}{h} \\
\frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(\mathrm{x}+h \hat{\mathrm{e}}_{\mathrm{i}}\right)-f(\mathrm{x})}{h}
\end{gathered}
$$

Higher Derivatives

Higher Derivatives

If f is a function of two variables, then its partial derivatives f_{x} and f_{y} are also functions of two variables, so we can consider their partial derivatives $\left(f_{x}\right)_{x},\left(f_{x}\right)_{y},\left(f_{y}\right)_{x}$, and $\left(f_{y}\right)_{y}$, which are called the second partial derivatives of f. If $z=f(x, y)$, we use the following notation:

$$
\begin{aligned}
& \left(f_{x}\right)_{x}=f_{x x}=f_{11}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}} \\
& \left(f_{x}\right)_{y}=f_{x y}=f_{12}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x} \\
& \left(f_{y}\right)_{x}=f_{y x}=f_{21}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y} \\
& \left(f_{y}\right)_{y}=f_{y y}=f_{22}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} z}{\partial y^{2}}
\end{aligned}
$$

Thus the notation $f_{x y}$ (or $\partial^{2} f / \partial y \partial x$) means that we first differentiate with respect to x and then with respect to y, whereas in computing $f_{y x}$ the order is reversed.

Clairaut's Theorem Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Tangent Planes

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

2 Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Normal

FIGURE 13.4.10 The surface $z=f(x, y)$, its tangent plane at $P\left(x_{0}, y_{0}, z_{0}\right)$, and the vector $-\mathbf{n}$ normal to both at P.

FIGURE 13.4.11 The paraboloid and tangent plane of Example 6.

Example 6: Write an equation of the tangent plane to the Paraboloid $z=5-2 x^{2}-y^{2}$ at $\mathrm{P}(1,1,2)$

