DEPARTMENT OF MATHEMATICS, IIT - GUWAHATI
Odd Semester of the Academic Year 2021-2022
MA 101 Mathematics I
Problem Sheet 3: Critical points, maxima and minima, Lagrange's
multipliers, volume of solids of revolution, etc
Instructors: Dr. J. C. Kalita and Dr. S. Upadhyay

1. Find the local maximum and minimum values and saddle point(s) of the functions:
(a) $f(x, y)=x^{2}+y^{2}+x^{2} y+4$
(b) $f(x, y)=4 x y-x^{4}-y^{4}$
(c) $f(x, y)=\sin x \cosh y$
(d) $f(x, y)=x+2 y+\frac{4}{x}-y^{2}$.
2. Find the absolute maximum and minimum values of $f(x, y)=4 x y^{2}-x^{2} y^{2}-x y^{3}$ on the set D where D is the closed triangular region in the $x y$-plane with vertices $(0,0),(0,6)$ and $(6,0)$.
3. For the following functions the origin is a critical point; determine whether $f(\mathbf{0})$ is a local minimum value, a local maximum value or neither
(a) $f(x, y, z)=5 x^{2}+4 y^{2}+7 z^{2}+4 x y+2 z \sin x+6 y \sin z$
(b) $f(w, x, y, z)=w x+2 x y+3 y z-w^{2}-2 x^{2}-3 y^{2}-4 z^{2}$.
4. Find the points on the surface $z^{2}=x y+1$ that are closest to the origin.
5. Find the volume of the largest rectangular box with edges parallel to the axes that can be inscribed in the ellipsoid $9 x^{2}+36 y^{2}+4 z^{2}=36$.
6. The plane $x+y+z=12$ cuts the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the highest and lowest points on this ellipse.
7. Use Langrange multipliers to find the minimum and maximum values of the functions subject to the given constraint(s)
(a) $f(x, y)=4 x+6 y ; x^{2}+y^{2}=13$
(b) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n} ; x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$
(c) $f(x, y)=e^{-x y} ; x^{2}+4 y^{2} \leq 1$.

Suppose that a scientist has reason to believe that two quantities x and y are related linearly, that is, $y=m x+b$, at least approximately for some values of m and b. The scientist performs an experiment and collects data in the form of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots .,\left(x_{n}, y_{n}\right)$, and then plots these points. The points don't exactly lie on a straight line, so the scientist wants to find constants m and b such that the line $y=m x+b$ "fits" the points as well as possible. Let $d_{i}=y_{i}-\left(m x_{i}+b\right)$ be the vertical deviation of the point $\left(x_{i}, y_{i}\right)$ from the line. The method of least
8.

squares determines m and b so as to minimize $\sum_{i=1}^{n} d_{i}^{2}$, the sum of the squares of these deviations. Show that according to this method, the line of best fit is obtained when

$$
\begin{aligned}
m \sum_{i=1}^{n} x_{i}+b n & =\sum_{i=1}^{n} y_{i} \\
m \sum_{i=1}^{n} x_{i}^{2}+b \sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} x_{i} y_{i} .
\end{aligned}
$$

9. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.
(a) $y=x^{2}, y^{2}=x$; about x-axis
(b) $y^{2}=x, x=2 y$; about y-axis
(c) $y=x, y=x^{2}$; about the line $x=-1$.
10. Find the volume of the wedge that is cut from a circular cylinder with unit radius and unit height by a plane that passes through a diameter of the base of the cylinder and through a point on the circumference of its top.
11. Prove that the length of one arch of the sine curve $y=\sin x$ is equal to half the circumference of the ellipse $2 x^{2}+y^{2}=2$.
12. Find the total length of the asteroid given by $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$ and then find the area of the surface generated by revolving the asteroid around the y-axis.
