DEPARTMENT OF MATHEMATICS, IIT - GUWAHATI
 Odd Semester of the Academic Year 2021-2022
 MA 101 Mathematics I
 Problem Sheet 4: Multiple integrals and applications, Green's Theorem, Stokes Theorem and Divergence Theorem.
 Instructors: Dr. J. C. Kalita and Dr. S.Upadhyay

1. Evaluate the integrals:
(a) $\int_{0}^{3} \int_{0}^{1} \sqrt{x+y} d x d y$
(b) $\int_{R} \int \frac{x y^{2}}{x^{2}+1} d A, R=\{(x, y) \mid 0 \leq x \leq 1,-3 \leq y \leq 3\}$
(c) $\int_{R} \int x \sin (x+y) d A, R=\left[0, \frac{\pi}{6}\right] \times\left[0, \frac{\pi}{3}\right]$.
2. Find the volume of the solid lying under the plane $z=2 x+5 y+1$ and above the rectangle $\{(x, y) \mid-1 \leq x \leq 1,1 \leq y \leq 4\}$.
3. Find the volume of the solid lying under the elliptic paraboloid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+z=1$ and above the square $R=[-1,1] \times[-2,2]$.
4. Evaluate the iterated integrals:
(a) $\int_{0}^{1} \int_{y}^{e^{y}} \sqrt{x} d x d y$
(b) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos \theta} e^{\sin \theta} d r d \theta$.
5. Evaluate the double integrals:
(a) $\int_{D} \int \frac{2 y}{x^{2}+1} d A, R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq \sqrt{x}\}$
(b) $\int_{D} \int x \cos y d A, D$ is bounded by $y=0, y=x^{2}, x=1$
(c) $\int_{D} \int_{D} y^{3} d A, D$ is the triangular region with vertices $(0,2),(1,1)$ and $(3,2)$.
6. Find the volume of the given solids.
(a) Under the paraboloid $z=x^{2}+y^{2}$ and above the region bounded by $y=x^{2}$ and $x=y^{2}$
(b) Under the surface $z=x y$ and above the triangle with vertices $(1,1),(4,1)$ and $(1,2)$
(c) Bounded by the cylinder $x^{2}+z^{2}=9$ and the planes $x=0, y=0, z=0, x+2 y=2$ in the first octant
(d) Bounded by the planes $x=0, y=0, z=0$, and $x+y+z=1$.
7. Get an upper bound and lower bound of each of the integrals given below by using the result that if m, M are such that $m \leq f(x, y) \leq M$ for all $(x, y) \in D$ then $m \times A(D) \leq \int_{D} \int f(x, y) d A \leq M \times A(D)$, where $A(D)$ is the area of D.
(a) $\int_{D} \int \sqrt{x^{3}+y^{3}} d A, D=[0,1] \times[0,1]$
(b) $\int_{D} \int e^{x^{2}+y^{2}} d A, D$ being the disk with center at origin and radius 0.5 .
8. Using polar coordinates, find:
(a) $\iint_{R} x y d A$, where R is the region in the first quadrant that lies between the circles $x^{2}+y^{2}=4$
(d) The volume inside both the cylinder $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$
(e) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{x^{2}+y^{2}} d y d x$
(f) $\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} x^{2} y^{2} d x d y$.
9. Find the mass, center of mass and the moments of inertia I_{x}, I_{y} and I_{o} of the lamina D bounded by the parabola $x=y^{2}$ and the line $y=x-2$; the density is $\rho(x, y)=3$.
10. Find the area of the surface:
(a) The part of the plane $3 x+2 y+z=6$ that lies in the first octant
(b) The part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$
(c) The part of the ellipse cut from the plane $z=2 x+2 y+1$ by the cylinder $x^{2}+y^{2}=1$
(d) The part cut from the paraboloid $z=r^{2}$ by the cylinder $r=1$.
11. Evaluate the following triple integrals.
(a) $\iiint_{E} 2 x d V$, where $E=\left\{(x, y, z) \mid 0 \leq y \leq 2,0 \leq x \leq \sqrt{4-y^{2}}, 0 \leq z \leq y\right\}$
(b) $\iiint_{E} x d V$, where E is bounded by the paraboloid $x=4 y^{2}+4 z^{2}$ and the plane $x=4$.
12. Use triple integral to find the volume of the tetrahedron bounded by the coordinate planes and the plane $2 x+3 y+6 z=12$.
13. Use cylindrical or spherical coordinates whichever is appropriate, to:
(a) Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$, where E is the region that lies inside the cylinder $x^{2}+y^{2}=16$ and between the planes $z=-5$ and $z=4$
(b) Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$
(c) Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where E is bounded below by the cone $\phi=\frac{\pi}{6}$ and above by the sphere $\rho=2$.
14. Find the volume and centroid of the solid E that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=1$.
15. Show that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z=2 \pi$.
16. Use the given transformation to evaluate the integral:
(a) $\iint_{R}(3 x+4 y) d A$, where R is the region bounded by the lines $y=x, y=x-2, y=-2 x$ and $y=3-2 x ; x=\frac{1}{3}(u+v), y=\frac{1}{3}(v-2 u)$
(b) $\iint_{R} x y d A$, where R is the region in the first quadrant bounded by the lines $y=x$ and $y=3 x$ and the hyperbolas $x y=1, x y=3 ; x=\frac{u}{v}, y=v$.
17. Evaluate the following integrals by making appropriate change of variables:
(a) $\iint_{R} \cos \left(\frac{y-x}{y+x}\right) d A$, where R is the trapezoidal region with vertices $(1,0),(2,0),(0,2)$ and $(0,1)$
(b) $\iint_{R} \frac{1}{\left(x^{2}+y^{2}\right)^{2}} d x d y$, where R is the first quadrant region bounded by the circles $x^{2}+y^{2}=2 x$, $x^{2}+y^{2}=6 x$ and the circles $x^{2}+y^{2}=2 y, x^{2}+y^{2}=8 y$.
18. Let R be the solid ellipsoid with constant density δ and boundary surface

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Use appropriate transformations to show that the mass M of R is $\frac{4}{3} \pi \delta a b c$.

