DEPARTMENT OF MATHEMATICS, IIT - GUWAHATI Odd Semester of the Academic Year 2021-2022 MA 101 Mathematics I Problem Sheet 4: Multiple integrals and applications, Green's Theorem, Stokes Theorem and Divergence Theorem. Instructors: Dr. J. C. Kalita and Dr. S.Upadhyay

1. Evaluate the integrals:

(a)
$$\int_{0}^{3} \int_{0}^{1} \sqrt{x+y} dx dy$$

(b) $\int_{R} \int \frac{xy^{2}}{x^{2}+1} dA, R = \{(x,y) | 0 \le x \le 1, -3 \le y \le 3\}$
(c) $\int_{R} \int x \sin(x+y) dA, R = \left[0, \frac{\pi}{6}\right] \times \left[0, \frac{\pi}{3}\right].$

- 2. Find the volume of the solid lying under the plane z = 2x + 5y + 1 and above the rectangle $\{(x, y) | -1 \le x \le 1, 1 \le y \le 4\}$.
- 3. Find the volume of the solid lying under the elliptic paraboloid $\frac{x^2}{4} + \frac{y^2}{9} + z = 1$ and above the square $R = [-1, 1] \times [-2, 2]$.
- 4. Evaluate the iterated integrals:

(a)
$$\int_{0}^{1} \int_{y}^{e^{y}} \sqrt{x} dx dy$$

(b)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos \theta} e^{\sin \theta} dr d\theta.$$

5. Evaluate the double integrals:

(a)
$$\int_{D} \int \frac{2y}{x^{2}+1} dA$$
, $R = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x}\}$
(b) $\int_{D} \int x \cos y dA$, D is bounded by $y = 0, y = x^{2}, x = 1$
(c) $\int_{D} \int y^{3} dA$, D is the triangular region with vertices (0,2), (1,1) and (3,2).

6. Find the volume of the given solids.

- (a) Under the paraboloid $z = x^2 + y^2$ and above the region bounded by $y = x^2$ and $x = y^2$
- (b) Under the surface z = xy and above the triangle with vertices (1,1), (4,1) and (1,2)
- (c) Bounded by the cylinder $x^2 + z^2 = 9$ and the planes x = 0, y = 0, z = 0, x + 2y = 2 in the first octant
- (d) Bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 1.
- 7. Get an upper bound and lower bound of each of the integrals given below by using the result that if m, M are such that $m \leq f(x, y) \leq M$ for all $(x, y) \in D$ then $m \times A(D) \leq \int_{D} \int f(x, y) dA \leq M \times A(D)$, where A(D) is the area of D.

(a)
$$\int_{D} \int \sqrt{x^3 + y^3} dA$$
, $D = [0, 1] \times [0, 1]$
(b) $\int_{D} \int e^{x^2 + y^2} dA$, D being the disk with center at origin and radius 0.5

- 8. Using polar coordinates, find:
 - (a) $\iint_R xydA$, where R is the region in the first quadrant that lies between the circles $x^2 + y^2 = 4$ and $x^2 + x^2 = 25$

- (d) The volume inside both the cylinder $x^2 + y^2 = 4$ and the ellipsoid $4x^2 + 4y^2 + z^2 = 64$
- (e) $\int_0^1 \int_0^{\sqrt{1-x^2}} e^{x^2+y^2} dy dx$ (f) $\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} x^2 y^2 dx dy.$
- 9. Find the mass, center of mass and the moments of inertia I_x , I_y and I_o of the lamina D bounded by the parabola $x = y^2$ and the line y = x - 2; the density is $\rho(x, y) = 3$.
- 10. Find the area of the surface:
 - (a) The part of the plane 3x + 2y + z = 6 that lies in the first octant
 - (b) The part of the hyperbolic paraboloid $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$
 - (c) The part of the ellipse cut from the plane z = 2x + 2y + 1 by the cylinder $x^2 + y^2 = 1$
 - (d) The part cut from the paraboloid $z = r^2$ by the cylinder r = 1.
- 11. Evaluate the following triple integrals.

(a)
$$\iiint_E 2xdV$$
, where $E = \{(x, y, z) | 0 \le y \le 2, 0 \le x \le \sqrt{4 - y^2}, 0 \le z \le y\}$

- (b) $\iiint_E x dV$, where E is bounded by the paraboloid $x = 4y^2 + 4z^2$ and the plane x = 4.
- 12. Use triple integral to find the volume of the tetrahedron bounded by the coordinate planes and the plane 2x + 3y + 6z = 12.
- 13. Use cylindrical or spherical coordinates whichever is appropriate, to:
 - (a) Evaluate $\iiint_E \sqrt{x^2 + y^2} dV$, where E is the region that lies inside the cylinder $x^2 + y^2 = 16$ and between the planes z = -5 and z = 4
 - (b) Evaluate $\iiint_E x^2 dV$, where E is the solid that lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0, and below the cone $z^2 = 4x^2 + 4y^2$
 - (c) Evaluate $\iiint_E \sqrt{x^2 + y^2 + z^2} dV$, where *E* is bounded below by the cone $\phi = \frac{\pi}{6}$ and above by the sphere $\rho = 2$.
- 14. Find the volume and centroid of the solid E that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$.
- 15. Show that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^2 + y^2 + z^2} e^{-(x^2 + y^2 + z^2)} dx dy dz = 2\pi.$
- 16. Use the given transformation to evaluate the integral:
 - (a) $\iint_R (3x+4y) dA$, where *R* is the region bounded by the lines y = x, y = x-2, y = -2x and $y = 3-2x; x = \frac{1}{3}(u+v), y = \frac{1}{3}(v-2u)$
 - (b) $\iint_R xydA$, where R is the region in the first quadrant bounded by the lines y = x and y = 3x and the hyperbolas xy = 1, xy = 3; $x = \frac{u}{v}$, y = v.
- 17. Evaluate the following integrals by making appropriate change of variables:
 - (a) $\iint_R \cos\left(\frac{y-x}{y+x}\right) dA$, where R is the trapezoidal region with vertices (1,0), (2,0), (0,2) and (0,1)
 - (b) $\iint_{R} \frac{1}{(x^2+y^2)^2} dx dy$, where R is the first quadrant region bounded by the circles $x^2 + y^2 = 2x$, $x^2 + y^2 = 6x$ and the circles $x^2 + y^2 = 2y$, $x^2 + y^2 = 8y$.

18. Let R be the solid ellipsoid with constant density δ and boundary surface

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Use appropriate transformations to show that the mass M of R is $\frac{4}{3}\pi\delta abc$.