
Exploiting On-Chip Routers to Store
Dirty Cache Blocks in Tiled Chip Multi-Processors

Abhijit Das∗, Abhishek Kumar∗, John Jose∗ and Maurizio Palesi†
∗Dept. of Computer Science and Engineering, Indian Institute of Technology Guwahati, India

†Dept. of Electrical, Electronic and Computer Engineering, University of Catania, Italy

{abhijit.das, abhishek18a, johnjose}@iitg.ac.in, maurizio.palesi@dieei.unict.it

Abstract—To meet the worst-case performance requirements,
on-chip routers in Tiled Chip Multi-Processors (TCMPs) are
provisioned with input port buffers. However, in real applications,
the average buffer utilisation in routers is significantly low except
during peak network congestion. In this work, we exploit the
idle buffers in Network-on-Chip (NoC) routers to store dirty
cache blocks evicted from the L1 cache. Future requests for such
recently evicted cache blocks are serviced from the router buffer,
thereby significantly reducing the cache miss latency. We propose
two variations on how long we can store these evicted cache
blocks on NoC router buffers; one up to a time threshold and
another up to the arrival of a demand from an L2 cache bank.
We make architectural modifications on the buffer management
circuitry of NoC routers to make sure that the evicted, dirty cache
blocks are stored in the local routers for the longest duration
possible to facilitate local reply. Experimental results show that
our proposed modifications achieve a maximum system speedup
of up to 15% and an average system speedup of 12%.

Index Terms—Miss latency, Cache coherence, Virtual channel

I. INTRODUCTION

Tiled Chip Multi-Processors (TCMPs) provide the architec-

tural backbone for smart IoT devices and high-end embedded

systems. TCMPs are used in the simplest of handheld devices

like mobile phones to the most complex data centre servers.

One of the most fundamental challenges in designing these

systems is to employ policies for efficient utilisation of shared

resources. As TCMPs scale to hundreds of cores, one of the

shared resources, Network-on-Chip (NoC) plays a vital role

in the access latency of memory requests. Past investigations

show that NoC resource utilisation is very low for standard

multi-processor workloads, with an average injection rate of

around 5% [1][2][3]. This under-utilisation of NoC resources

and its subsequent utility for other on-chip functions is a

promising area of research to explore.

Current NoC based TCMPs like Intel Xeon Phi Proces-

sors [4] have small private, write-back L1 caches and shared

distributed L2 caches. When an L1 cache miss evicts a dirty

(modified) cache block to give space for an incoming requested

block, the dirty cache block is sent to the corresponding

L2 cache bank for write-back over the NoC. The L1 to L2

cache communication is done through the underlying NoC

using wormhole switching. This packet based communication

in TCMPs usually traverses through multiple NoC routers.

These routers have buffers to store transit packets during their

routing and arbitration decisions. Finally, these packets upon

reaching the destination tile update the corresponding L2 cache

block. However, for applications that show temporal locality

of reference, the same cache block which is just evicted and

written back to the L2 cache bank may be requested again. In

this case, the updated cache block needs to be brought back

again, all the way from L2 to L1 cache. Increasing the L1

cache size might solve the problem up to an extent, but it is

not cost-effective as large L1 cache may impact the L1 cache

hit time and hence affect the instruction pipeline frequency.

Modern TCMPs employ input buffered NoC routers for

scalable on-chip bandwidth [5][6]. Our work is also moti-

vated from this fact that we have input buffered routers in

commercial NoC based TCMPs [4]. Our experimental results

show that, upon running real applications, the average buffer

utilisation of routers is generally very low except during peak

network congestion [7]. In this work, we store evicted, dirty

cache blocks from a tile on empty buffers of the local NoC

router. While a write-back cache block is stored in the local

router, future requests for the same block can be immediately

serviced from the router buffer itself rather than fetching from

the distant L2 cache bank. This will significantly decrease

the cache miss latency and hence improve overall system

performance. We make the following major contributions:

1) We model an NoC architecture that identifies evicted,

dirty cache blocks passing over the NoC and stores

them in empty buffers of local routers. Subsequent re-

referencing to such evicted cache blocks are serviced

from the local router buffers to reduce the miss latency.

2) We propose architectural modifications in router logic

to forward the stored, evicted dirty cache blocks from

an NoC router to L2 cache bank at regular time inter-

vals. This technique is known as Time-Triggered Block

Forward (TT-BF).

3) We also propose architectural modifications in router

logic to forward the stored, evicted dirty cache blocks

from an NoC router to L2 cache bank when there is a

request message for the stored data. This technique is

known as Message-Triggered Block Forward (MT-BF).

II. RELATED WORK AND MOTIVATION

Prior research efforts explored the possibilities of efficient

on-chip resource utilisation in different capacities. Initial

works focused on implementing in-network cache and co-

herence [8][9][10][11]. Then came the era of power-aware

147

2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/20/$31.00 ©2020 IEEE
DOI 10.1109/ISVLSI49217.2020.00036

Crossbar

North
PE

West
South
EastR

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

Ci

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

Cj

North
Processor

L1 D Cache

NIC

L1 I Cache

L2 Cache

Input Unit

VC 3

VC 2

VC 1

VC 0

PE

West
South

East

Switch Allocator
(SA)

VC Allocator
(VA)

Credits
Credits

R: RouterPE: Processing Element

H B1 B2 T
A

at Tx

H
A

at Ty

Route Compute
(RC)

Figure 1: Conceptual view of a 16-core NoC based TCMP. A packet in NoC is divided into multiple smaller units called flits.

A request packet consists of a single head flit (H), whereas a reply packet consists of a head flit followed by multiple body

flits and ended by a tail flit (H, B1, B2, T). Flits of a particular packet always travel in order.

 0

 5000

 10000

 15000

 20000

 25000

asta
r

gromacs
h264ref

hmmer

perlb
ench sjen

g
soplex

sphinx
Avera

ge

Av
era

ge
Re

-re
fer

enc
e T

im
e (

cyc
les

)

SPEC CPU2006 Benchmarks

Lower the better
Clean-Cache-Blocks
Dirty-Cache-Blocks

Figure 2: Average re-reference time of evicted cache blocks

NoC designs including bufferless and minimally buffered

routers [12][13][14][15]. Now, the trend is more towards data

and computation aware NoC designs [16][17][18]. Neverthe-

less, router buffers in modern TCMPs are underutilised [7], so

can we do something with them (Q1)?

As shown in Figure 1, at time Tx, core Ci sends an

NoC packet (evicted cache block) with address A to core Cj

(shown in red). However, at time Ty , core Ci sends another

request packet for the same address A to core Cj (shown

in blue) where Tx < Ty but are fairly closer. This is a

case of re-referencing a recently evicted, dirty cache block.

Figure 2 shows the average re-reference time of evicted cache

blocks (both clean and dirty) for different multiprogrammed

benchmarks (SPEC CPU2006) in a 64-core, Out-of-Order

(OoO), 1GHz NoC based TCMP. The red bars show the

average re-reference time of only clean cache blocks, and the

green bars show the average re-reference time of only dirty

cache blocks. For example, upon running the benchmark astar,

an evicted clean cache block and evicted dirty cache block are

re-referenced within an average time of 5700 cycles (red) and

7300 cycles (green), respectively. Across all benchmarks, on

average, within a small interval of around 9000 cycles, an

evicted cache block is re-referenced again.

Clean cache blocks upon eviction are overwritten, whereas

evicted dirty cache blocks are written back to the correspond-

ing L2 cache bank. The whole process of eviction, write-back

and bringing back of the same cache block on re-reference

has a significant impact on cache miss latency. Can this re-

reference latency be reduced (Q2)? We have two questions,

Q1 and Q2 to answer and if we carefully merge them, they

solve each others problem. When the same cache block is re-

referenced by the same core in near the future, we arrange for

a direct reply of the stored block from the local router.

III. PROPOSED ARCHITECTURE

In this section, we present our proposed architecture which

is aimed towards homogeneous NoC based TCMPs like Intel

Xeon Phi Processors [4]. We analyse how we can exploit the

empty buffers of NoC routers to store evicted, dirty cache

blocks. We show that the future data requests on the same

stored cache blocks can be locally replied by maintaining

cache coherence. Finally, we explain about forwarding the

stored cache blocks using two different optimisations.

A. Storing Evicted, Dirty Cache Blocks in Routers

When a memory request from the processor results in an L1

cache miss, the requested block is brought from corresponding

L2 cache bank as packets through the underlying NoC. The

victim block is evicted from the cache to make room for the

incoming requested block. This eviction of the valid cache

block is intimated to the corresponding L2 cache bank to main-

tain coherency. The coherence update is also communicated

through the NoC. Depending on the location of corresponding

L2 cache bank, these packets traverse through multiple routers

to finally reach their respective destinations.

In MOESI coherency protocol, a valid cache block can

be either in shared, exclusive, owned or modified state. The

actions performed on a block eviction from an L1 cache of

conventional TCMP is briefed in Table 1; except the last row

shown in red. Control and data packets are sent over NoC

from L1 to L2 to communicate the eviction. These packets

first reach the local router that is directly connected to the tile,

get stored in the available buffers of virtual channels (VCs)

and take part in routing and arbitration decisions.

As shown in Figure 3, we make use of the empty buffers

of VCs in the local router to store evicted, dirty cache blocks

for as long as possible. L1 cache sends dirty cache blocks

for write-back to L2 cache after getting an acknowledgement

as given in Table 1. We identify dirty data packets that are

148

North
PE

West
South
EastR

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

Ci

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

Cj

North
Processor

L1 D Cache

NIC

L1 I Cache

L2 Cache

Input Unit

PE

West
South

East

Switch Allocator
(SA)

VC Allocator
(VA)

Credits
Credits

Route Compute
(RC)

R: RouterPE: Processing Element

Local Store/Reply
Block Forward

(LSR-BF)

Crossbar
VC 3

VC 2

VC 1
T B2 B1 H

VC 0

τ0

τ1

τ3

τ2
D M

Figure 3: Conceptual view of our proposed optimisation with modified router microarchitecture. All the additional units in the

router are shown in red. The local input VC buffer shown with red flits (H, B1, B2 and T) signifies the storage of an evicted,

dirty cache block. If the same block is re-referenced in near future while it is stored, we can generate a local reply.

Table 1: Actions on L1 cache block eviction where, S: shared, E: exclusive, O: owned, and M: modified.

State Action at L1 Packet Action at NoC Action at L2
S Send invalidation of cache block to L2 Control Store in local VC for routing and arbitration Remove entry from sharer list

E Send invalidation of cache block to L2 Control Store in local VC for routing and arbitration Remove entry from owner list

O & M Ask permission to send cache block to L2 Control Store in local VC for routing and arbitration Send acknowledgement to receive dirty cache block

O & M Send dirty cache block to L2 Data Store in local VC for routing and arbitration Write cache block and remove entry from owner list

O & M Send dirty cache block to L2 Data Store in local VC; routing but no arbitration Wait for the dirty cache block; unaware of local store

DestSrc AddrTypeMsg Dirty Local

Figure 4: Modified packet header

moving from L1 to L2 cache. Such packets are marked with

an extra bit (Dirty) in their header as shown in Figure 4. When

packets enter the local router and get stored in the buffers of

VC for routing and arbitration, Dirty bit is checked by the

additional Local Store/Reply and Block Forward (LSR-BF) unit

as shown in Figure 3. LSR-BF unit works in parallel with

Route Compute (RC) unit. So, when a check is performed

to identify a dirty packet, route computation for the same

packet is also being performed. Now, if a dirty packet is

found by LSR-BF unit, VC and switch arbitration is disabled

for the packet. These dirty packets are now stored in the

local router until a special action is initiated (discussed in

Section III-D). We do not make any change in the L1 and L2

cache controllers; hence they are unaware of this optimisation.

From L1 cache controller viewpoint, an evicted dirty cache

block is on its way to or already reached the corresponding L2

cache bank. The L2 cache controller is with the impression that

the dirty cache block is on its way. The modified action upon

a block eviction with our proposal is given in red in Table 1.

The working of LSR-BF unit is presented in Algorithm 1.

B. Replying to Cache Block Requests from Local Routers

In a conventional TCMP, when a processor encounters an

L1 miss on an evicted, dirty cache block (or any cache block

in general), a request message (control packet) is sent over

NoC to the corresponding L2 cache bank. Upon receiving the

request, the L2 cache bank replies with a response message

(data packet, containing the requested block) over NoC, back

to the requesting L1. Our proposal modifies this communica-

tion between L1 and L2 caches in an attempt to respond to

new cache miss requests from the local router, if possible.

According to our proposal, when control packet of the

requested message reaches the local router, it checks the non-

empty VCs with the help of LSR-BF unit using the technique

presented in Algorithm 1. For all the stored, dirty packets in

the non-empty VCs, LSR-BF unit compares the address of

the requested block with the addresses of the block of these

stored, dirty packets. If a match is found, we can satisfy the

request message from the local router. LSR-BF unit converts

the matched dirty packet into a response message (data packet,

containing the requested block) and send it to L1 cache. This

is done by changing the source and destination of the dirty

packet. The request message is dropped and the local reply is

directly sent bypassing the crossbar using D and M as shown in

Figure 3 of our modified router microarchitecture. Again, both

L1 and L2 cache controllers are unaware of this optimisation.

L1 considers that it has received a response message from L2,

while L2 thinks the dirty cache block is still on its way to

the L2 cache bank. However, the state of the requested block

may be different than the stored dirty block (which is either

in owned or modified state). For example, suppose the address

matched for a requested cache block, but the requested state

is shared. Irrespective of the state requested the local reply

is always sent in the same state as that in the matched block

(owned/modified). This gives an added advantage as future

requests for exclusive access of the block is not required.

149

Algorithm 1: Working of LSR-BF Unit

Input : VC information, modified packet header

Output: Local store or reply, and block forward

Notations:
n: Number of virtual channels (V C)

τi: Time threshold of V Ci, where 0 ≤ i < n
P j
i : Packet in V Ci where j ∈ {new, stored}

if Pnew
i [Type] == REPLY then
/* This section is for local store [Section III-A] */

if Pnew
i [Dirty] == 1 then
τi = 128 ∨ 256 ∨ 512
Disable VA and SA for Pnew

i
else

/* This section is for local reply [Section III-B] */

for ∀VCk where τk > 0 do
if P stored

k [Addr] == Pnew
i [Addr] then

τk = 0
P stored
k [Local] = 1

P stored
k [Dirty] = 0

P stored
k [Src] = Pnew

i [Dest]
P stored
k [Dest] = Pnew

i [Src]
Deallocate V Ci to drop Pnew

i

Bypass crossbar for P stored
k

/* This section is for TT-BF [Section III-D] */

for ∀τi where τi > 0 do
τi = τi − 1
if τi == 0 then

P stored
i [Dirty] = 0

Enable VA and SA for P stored
i

/* This section is for MT-BF [Section III-D] */

if Pnew
i [Msg] == WB ACK DATA then
for ∀VCk where τk > 0 do

if P stored
k [Addr] == Pnew

i [Addr] then
τk = 0
P stored
k [Dirty] = 0

Deallocate V Ci to drop Pnew
i

Enable VA and SA for P stored
k

C. Maintaining Cache Coherence

When we consider shared cache, managing coherency

across the system is one of the major challenges. When

we store evicted, dirty cache blocks in the local router and

generate local replies with them, we need to make sure that

they are coherent with the entire system. Since both L1

and L2 controllers are unaware of this storage, it is even

more complicated and challenging. We store only dirty cache

blocks; which are either in owned or modified state. Hence our

discussion about maintaining coherency is limited to them.

For every cache block, the shared L2 cache controller main-

tains an entry of the corresponding sharers/owner. Only after

acquiring a cache block in exclusive state (as owner), L1 cache

can modify the block. Hence, the owner of a dirty cache block

is the same L1 cache that evicted it out. As long as the dirty

cache block is stored in the local router (owned/modified),

there is no need to exchange further messages to maintain

coherency. During this time, if any other L1 cache requests

for the same cache block, L2 cache controller puts it on wait.

The L2 cache controller is expecting the modified cache block

because it is aware that the L1 cache controller has already

evicted the block as per the acknowledgement given by L2.

When we send a local reply from router, the cache block

is replied in owned/modified state irrespective of the state

it is requested for. The distinction between local reply and

others are quantised as a 1-bit value Local stored in the

packet header as shown in Figure 4. If L1 cache controller

receives a reply packet from the local router, it sends a new

coherence message UNBLOCK PUT CANCEL to L2. This

coherence message informs L2 that the corresponding dirty

cache block for write-back will not be sent. L2 clears the

waiting status for that block and all future requests to the same

block are directly forwarded to the L1 cache. All of these are

the default steps in MOESI coherency protocol, except the

sending of UNBLOCK PUT CANCEL. This way, we ensure

that coherency is maintained with our proposed optimisations.

D. Forwarding Stored Dirty Packets

Since there are limited buffers in local NoC router, we can

not keep the dirty packets stored there forever. A new packet

is injected into the NoC through the local router and they also

need free VC in the local input port. If a packet cannot be

injected into the local router due to unavailability of a free

VC, we identify stored dirty packets there and take necessary

steps to move them out of local router buffer. This is done

by enabling VC and switch arbitration for dirty packets which

were disabled when the dirty packets were stored in the buffer.

This makes sure that the corresponding VC will be free in

subsequent cycles and hence make space for new injection. By

storing dirty packets in local routers, we do not want to delay

or suppress new packet injection. In case, we find multiple

dirty packets stored in the local router, we pick the oldest of

them to enable for arbitration. If we do not find any dirty

packet stored, we do not do anything, since all other packets

will normally take part in routing and arbitration decisions.

Even in the absence of injection pressure, we do not keep

the dirty packets stored forever. The L2 cache controller is

expecting the dirty cache block for write-back. It may also be

making all other requesters wait for the same cache block. If

this wait is very long, then it might hamper the performance

of other requesters. We propose two techniques to trigger the

forwarding of stored dirty packets from the local router.

Time-Triggered Block Forward (TT-BF): An evicted,

dirty cache block is stored in the local router as a dirty

packet until a certain time threshold. We add a threshold

counter correspond to each VC of the local input port of NoC

routers as shown in Figure 3. When a counter reaches the

threshold, the dirty packet in the corresponding VC is enabled

for arbitration. This triggers forwarding of the dirty block

towards its corresponding L2 cache bank for write-back. Till

150

Table 2: Simulation configuration

Processor 64 OoO x86 cores

L1 cache 16KB, 4-way, 64B blocks, private, split

L2 cache 128KB×64 cores, 8-way, 64B blocks, shared

Directory 4; one located at each corner

Cache Coherence MOESI distributed directory

NoC 8×8 2D mesh, 4 VCs/port, 128-bit flit channel

Routing 2-stage routers, X-Y dimension-order routing

Packets 1-flit for control packets, 5-flit for data packets

Benchmarks SPEC CPU2006 (Multiprogrammed)

the time a block is locally stored, access requests for the same

block by others is delayed by the time threshold in L2 cache.

Message-Triggered Block Forward (MT-BF): As per MT-

BF, while waiting for a write-back cache block if L2 receives

a request for the same block by others, it sends a coherence

message WB ACK DATA to L1. It is the same acknowledge-

ment message that L2 send L1 to receive a dirty cache block

for write-back. We just make L2 resend the same message

when a request comes for the locally stored block. When

this coherence message reaches the local router, it triggers

forwarding of the stored block. The coherence message is

dropped and the dirty packet is enabled for arbitration. LSR-

BF unit takes care of this implementation as presented in

Algorithm 1. As LSR-BF unit works in parallel with the RC

unit, it is not in the critical path of execution.

IV. EXPERIMENTAL ANALYSIS

A. Simulation Framework and Workloads

We model the proposed system on event-driven gem5 sim-

ulator [19]. Our system configuration is similar to Intel Xeon

Phi Processor 7235 [4] with shared and distributed L2 cache.

For certain limitations in gem5, we could not exactly model

the cache configuration of Intel Xeon Phi Processor 7235.

However, our cache configuration gives a realistic hit rate

of around 95% for all the benchmarks we used. Our system

configuration is presented in Table 2 for reference. We modify

GARNET [20] module in gem5 to implement our modified

router microarchitecture. We modify MOESI CMP directory

protocol in Ruby to maintain cache coherency.

To evaluate the performance, we use various random mixes

of SPEC CPU2006 multiprogrammed benchmarks. Each mix

consists of a combination of 4 different benchmarks with

varying MPKI values and re-reference interval running 16

copies each (4×16: 64) as given in Table 3. By separately

profiling each benchmark, we choose a smaller representative

window of instructions to have a tractable simulation time.
B. Performance Evaluation

We evaluate the baseline (no optimisation) and proposed

architectures for performance, area and power. All our results

are normalised with respect to the baseline architecture.

Network Stall Time: It is defined as the number of

cycles the processor stalls waiting for a network packet.

This metric helps us to understand the direct impact of NoC

based communication. Figure 5 shows the normalised network

Table 3: Application scheduling for various workload mixes

Mix Benchmark Instances
M1 astar(16) perlbench(16) hmmer(16) sjeng(16)

M2 astar(16) perlbench(16) soplex(16) sphinx(16)

M3 h264ref(16) gromacs(16) hmmer(16) sjeng(16)

M4 h264ref(16) gromacs(16) soplex(16) sphinx(16)

M5 hmmer(16) sjeng(16) soplex(16) sphinx(16)

stall time with respect to the baseline system. For all the

workload mixes, both TT-BF and MT-BF experience reduction

in network stall time over baseline. This is mainly for the local

replies, as the packets need not travel all the way to the L2

cache bank or even worse to the off-chip memory. M3 and

M4 have significant reduction as they contain benchmarks with

lower average re-reference time of evicted, dirty cache blocks.

Miss Latency: It is defined as the number of cycles required to

replace a data block from L1 cache with a new incoming block.

Figure 6 shows the normalised miss latency with respect to

the baseline system. As expected, TT-BF reduces miss latency

for all the workload mixes with the local replies. Significant

reduction can be seen with MT-BF, as it improves the miss

latency of waiting requesters in L2 cache bank by triggering

an immediate block forward.

Speedup: We use total Instructions Per Cycle (IPC) of the

system to compare speedup. Figure 7 shows the normalised

speedup with respect to the baseline system. For all the work-

load mixes, both TT-BF and MT-BF achieve better speedup

than the baseline system. This improvement was intuitive

from the reduction in miss latency as shown in Figure 6.

M3 achieves the highest speedup of 14.78% as it consists of

benchmarks whose average re-reference time of evicted, dirty

cache blocks is least. On average, a speedup of 11.97% is

achieved across all benchmark mixes.

C. Sensitivity Analysis on Design Parameters

For all results discussed so far with TT-BF optimisation, we

have considered time threshold (τ) as 256 cycles. To decide

the optimal value of τ , we perform a sensitivity analysis by

taking different values of τ . The best logical value to try with

is 8401 cycles; the average re-reference time of evicted, dirty

cache blocks as shown in Figure 2. However, keeping the

dirty cache blocks stored for such a long duration hampers

the performance of other requesters who are waiting for the

same block in the corresponding L2 cache bank. So, we try a

defensive approach; the smallest re-reference time of evicted,

dirty cache blocks as shown in Figure 8. As we can see, the

smallest re-reference time of all the benchmarks we considered

is under 80 with an average value of 49 cycles. So, we conduct

our experiments with the value of τ as 64, 128, 256 cycles

etc. Figure 9 shows why we chose 256 as the optimal value

of τ , as increasing the value beyond that starts hampering the

performance. However, for MT-BF optimisation, we keep the

value of τ as 8192 (≈ 8401) cycles; closest to the average re-

access time of evicted, dirty cache blocks (Figure 2). Hence,

in MT-BF optimisation, an evicted, dirty cache block is either

151

 0.8

 0.85

 0.9

 0.95

 1

 1.05

M1 M2 M3 M4 M5 Average

N
or

m
al

is
ed

 N
et

w
or

k
St

al
l T

im
e

SPEC CPU2006 Benchmark Mixes

Lower the better
Baseline

TT-BF
MT-BF

Figure 5: Network Stall Time

 0.8

 0.85

 0.9

 0.95

 1

 1.05

M1 M2 M3 M4 M5 Average

N
or

m
al

is
ed

 M
is

s
La

te
nc

y

SPEC CPU2006 Benchmark Mixes

Lower the better
Baseline

TT-BF
MT-BF

Figure 6: Miss Latency

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

M1 M2 M3 M4 M5 Average

N
or

m
al

is
ed

 S
pe

ed
up

SPEC CPU2006 Benchmark Mixes

Higher the betterBaseline
TT-BF

MT-BF

Figure 7: Speedup

 0

 10

 20

 30

 40

 50

 60

 70

 80

ast
ar

gro
macs

h2
64

ref

hm
mer

pe
rlb

en
ch

sje
ng

sop
lex

sph
inx

Ave
rag

e

Sm
al

le
st

 R
e-

re
fe

re
nc

e
Ti

m
e

(c
yc

le
s)

SPEC CPU2006 Benchmarks

Figure 8: Smallest re-reference time

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

M1 M2 M3 M4 M5 Average

N
or

m
al

is
ed

 S
pe

ed
up

SPEC CPU2006 Benchmark Mixes

Higher the betterThreshold-128
Threshold-256
Threshold-512

Figure 9: Variation of time threshold

 0.98
 1

 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14
 1.16
 1.18

M1 M2 M3 M4 M5 Average

N
or

m
al

is
ed

 S
pe

ed
up

SPEC CPU2006 Benchmark Mixes

Higher the better
VC-2
VC-4
VC-6

Figure 10: Variation of number of VCs

forwarded after 8192 cycles or forwarded upon receiving a

message from L2 cache bank, whichever is earlier. This makes

sure that the performance is optimised by taking the best of

time threshold and message trigger.

As our optimisation is based on storage of evicted, dirty

cache blocks in buffers of VCs, we also explore the impact of

number of VCs per port on system performance. For all the

results discussed so far, we have considered number of VCs as

4 (as presented in Table 2). However, in Figure 10, we show

that varying number of VCs will have different implications

on the system performance. Based on the system requirements,

appropriate number of VCs can be chosen and hence will get

appropriate improvement with our optimisation.

D. Area and Power Evaluation

We use DSENT [21], integrated with gem5 to evaluate

the area and power of 8×8 2D mesh NoC in our proposed

architectures. In DSENT, we use 22nm processor technology

at 1GHz operating frequency. The addition of LSR-BF unit

and threshold counters (τis) incur a negligible area overhead

of 1.02% and a leakage power overhead of 1.03% compared to

the baseline routers. However, due to significant improvement

in overall system performance, we achieve 4.51% reduction in

dynamic power compared to the baseline routers.

V. CONCLUSION

In this work, we proposed two optimisations to exploit

idle buffers in on-chip routers. We used the idle buffers to

temporarily store evicted, dirty cache blocks and facilitate

local replies for future requests. Our two optimisations are

a time-based, and a message-based forwarding of dirty blocks

stored in the buffers of local routers. These optimisations are

proposed to keep the dirty blocks stored in the local router

for as long as possible and yield maximum benefit with local

replies. Experimental evaluations demonstrated that our opti-

misations significantly improves overall system performance.

Our future work is about analysing the issues in considering

evicted, clean blocks for local storage and reply.

REFERENCES

[1] N. Barrow-Williams et al., “A Communication Characterisation of
SPLASH-2 and PARSEC,” in IISWC, 2009.

[2] P. Gratz and S. W. Keckler, “Realistic Workload Characterization and
Analysis for Networks-on-Chip Design,” in CMP-MSI, 2010.

[3] R. Hesse et al., “Fine-Grained Bandwidth Adaptivity in Networks-on-
Chip using Bidirectional Channels,” in NOCS, 2012.

[4] (2017) Intel Xeon Phi Processor 7235. [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/128694/intel-
xeon-phi-processor-7235-16gb-1-3-ghz-64-core.html

[5] B. K. Daya et al., “Quest for High-Performance Bufferless NoCs with
Single-Cycle Express Paths and Self-Learning Throttling,” in DAC,
2016.

[6] G. Michelogiannakis et al., “Evaluating Bufferless Flow Control for On-
Chip Networks,” in NOCS, 2010.

[7] H. Farrokhbakht et al., “SMART: A Scalable Mapping and Routing
Technique for Power-Gating in NoC Routers,” in NOCS, 2017.

[8] N. Eisley et al., “In-Network Cache Coherence,” in MICRO, 2006.
[9] J. Wang et al., “Network Caching for Chip Multiprocessors,” in IPCCC,

2009.
[10] A. Yanamandra et al., “In-Network Caching for Chip Multiprocessors,”

in HiPEAC, 2009.
[11] J. Wang et al., “Network Victim Cache: Leveraging Network-on-Chip

for Managing Shared Caches in Chip Multiprocessors,” in EMC, 2009.
[12] T. Moscibroda and O. Mutlu, “A Case for Bufferless Routing in On-Chip

Networks,” in ISCA, 2009.
[13] B. Nayak et al., “SLIDER: Smart Late Injection DEflection Router for

mesh NoCs,” in ICCD, 2013.
[14] R. Parikh et al., “Power-Aware NoCs through Routing and Topology

Reconfiguration,” in DAC, 2014.
[15] J. Jose and A. Das, “An Adaptive Deflection Router with Dual Injection

and Ejection Units for Mesh NoCs,” in VLSID, 2018.
[16] J. Rettkowski and D. Gohringer, “Data Stream Processing in Networks-

on-Chip,” in ISVLSI, 2017.
[17] A. Das et al., “Critical Packet Prioritisation by Slack-Aware Re-routing

in On-Chip Networks,” in NOCS, 2018.
[18] K. Sangaiah et al., “SnackNoC: Processing in the Communication

Layer,” in HPCA, 2020.
[19] N. Binkert et al., “The gem5 Simulator,” SIGARCH CAN, 2011.
[20] N. Agarwal et al., “GARNET: A Detailed On-Chip Network Model

inside a Full-System Simulator,” in ISPASS, 2009.
[21] C. Sun et al., “DSENT - A Tool Connecting Emerging Photonics with

Electronics for Opto-Electronic NoC Modeling,” in NOCS, 2012.

152

