Packet Header Attack by Hardware Trojan in NoC based TCMP
and its Impact Analysis

Vedika J. Kulkarni, Manju R., Ruchika Gupta, John Jose, Sukumar Nandi

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati, India

ABSTRACT

With the advancement of VLSI technology, Tiled Chip Multicore
Processors (TCMP) with packet switched Network-on-Chip (NoC)
have been emerged as the backbone of the modern data intensive
parallel systems. Due to tight time-to-market constraints, manufac-
turers are exploring the possibility of integrating several third-party
Intellectual Property (IP) cores in their TCMP designs. Presence of
malicious Hardware Trojan (HT) in the NoC routers can adversely
affect communication between tiles leading to degradation of over-
all system performance. In this paper, we model an HT mounted
on the input buffers of NoC routers that can alter the destination
address field of selected NoC packets. We study the impact of such
HTs and analyse its first and second order impacts at the core level,
cache level, and NoC level both quantitatively and qualitatively.
Our experimental study shows that the proposed HT can bring
application to a complete halt by stalling instruction issue and can
significantly impact the miss penalty of L1 caches. The impact of
re-transmission techniques in the context of HT impacted packets
getting discarded is also studied. We also expose the unrealistic
assumptions and unacceptable latency overheads of existing mit-
igation techniques for packet header attacks and emphasise the
need for alternative cost effective HT management techniques for
the same.

CCS CONCEPTS

« Computer systems organization — Interconnection architec-
tures; « Security and privacy — Hardware security implementa-
tion; « Networks — Network reliability.

KEYWORDS

Hardware Trojan, Network-on-Chip Security, Secured TCMP de-
sign, Trojan Impact, Packet Header Attack

ACM Reference Format:

Vedika J. Kulkarni, Manju R., Ruchika Gupta, John Jose, Sukumar Nandi.
2021. Packet Header Attack by Hardware Trojan in NoC based TCMP and
its Impact Analysis. In International Symposium on Networks-on-Chip (NOCS
’21), October 14-15, 2021, Virtual Event, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3479876.3481597

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NOCS 21, October 1415, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9083-5/21/10...$15.00
https://doi.org/10.1145/3479876.3481597

P Ju]
Node
(9]
.,o, D L1 Cache
CI L2 Cache
- Router

SoC
Figure 1: TCMP with Homogeneous Nodes in a Single SoC

1 INTRODUCTION

In order to reduce time-to-market and overall cost of micropro-
cessors used in embedded systems and Internet-of-Things sectors,
System-on-Chips (SoCs) started housing third party Intellectual
Property(IP) blocks. Due to the high design cost, many chip manu-
facturing industries rely on outsourcing design automation, fabrica-
tion, and testing of integrated circuits [16]. Functional and logical se-
curity of such devices is at stake due to the involvement of untrusted
third parties during various phases of chip manufacturing. Mali-
cious circuits, known as Hardware Trojan (HT) implanted inside a
genuine blueprint design can go untraceable during the verification
and testing phase of SoC [12]. HTs can alter the system behavior to
deploy attacks such as information leakage, unauthorized access,
functional errors, and delay-of-service [8]. Some sophisticated HTs
easily bypass the root-of-trust technique and stay dormant till the
required input is fed. This makes it extremely difficult to trace their
existence [21]. Such intermittent HTs remain active only for a short
span of time, thereby HT detection becomes strenuous [17].

Tiled Chip Multicore Processors (TCMP) uses Network on Chip
(NoC) for inter tile communication [2]. NoC is a packet switched
framework where packets travel in the form of a series of flow
control units called flits. Head flit (packet header) carries the control
information required to forward the packet to its destination, while
body flits carry the data. Packets between two tiles are routed
through a set of intermediate routers based on an embedded routing
algorithm. Fig. 1 shows a typical TCMP connecting homogeneous
tiles (nodes). Modern TCMPs like Intel Xeon Phi and AMD Ryzen
Threadripper have similar architectures [6].

NoC being the communication backbone of TCMP is a prime
spot for mounting HT attacks. Since, NoC has access to data that
travel between tiles, an HT infected router is capable of performing
data corruption, stealing sensitive information and impacting QoS.
Detection, localization, and mitigation of HTs in NoC has always
been challenging and exhibit enormous research potential. Prior

https://doi.org/10.1145/3479876.3481597
https://doi.org/10.1145/3479876.3481597

NOCS °21, October 14-15, 2021, Virtual Event, USA

Vedika J. Kulkarni, Manju R., Ruchika Gupta, John Jose, Sukumar Nandi

Input Port with Buffers
Control Logic

VC Identifier

From East|

From West

L2cc

From North

—» To East
— To West
YEE
— To South
—To PE

From South

Crossbar (5 x 5)

From PE

Reply Packet: E] eee

Source: Tile 4

Destination: Tile 15

Figure 2: Internal architecture of tile and router in a 4x4 TCMP. Tile consists of Processor (P), L1 and L2 Caches, L1 Cache
Controller (L1CC), L2 Cache Controller (L2CC), Tile Controller (TC), and Network Adapter (NA)

research works have outlined techniques for the detection and lo-
calization of such attacks [16],[20],[15]. Denial of Service (DoS)
attack by HT causes network congestion, high communication la-
tency, and throughput degradation [7],[18]. HTs can be localized
by monitoring unusual traffic behaviour against DoS attack [5]. Bit
shuffling and Error Correcting Codes are advantageous in solving
HTs issue that corrupt data [11], [4]. Security zones managed by
a centralized security manager can protect sensitive information
stealing by malicious agents [19]. Data scrambling, packet authen-
tication using sophisticated ciphers, and node obfuscation methods
are proposed to protect data from compromised NoC [1]. Trojan
aware routing can bypass an HT infected router using cost effective
shielding [13]. Random forest algorithm of machine learning is used
to detect DoS attack in an online mode [22].

We specifically focus our attention on HTs that can manipulate
packet header. Modification of control fields in the packet by an
HT for leaking packet data to malicious applications is explored
recently [10]. To mitigate this type of HT, the authors suggest an
authentication mechanism where control fields of the packet are
tagged with a dynamic random value and the tag is scrambled with
the packet data. The suggested mitigation technique that involves
tag generation and key distribution among various cores make
unrealistic assumptions and involves unacceptable processing time
in NoC based systems. Moreover, they do not explore the HT impact
in terms of vital quantitative and qualitative metrics. To the best of
our knowledge, no other work explored packet header attacks in
NoC based systems and conducted in depth study on the impacts
created by such attacks. This motivated us to work further in this
direction and we make the following contributions in this paper.

a. We identify a suitable location in the NoC router where
an HT that can manipulate packet content can be inserted
without violating the router’s basic operation.

b. We model an HT that modifies the destination address of
a packet and simulate it in a TCMP, whose effect leads to
packet drop upon reaching a wrong destination tile.

c. To the best of our knowledge, we are the first to demonstrate
the impact of an HT that modifies the destination address
field of an NoC packet header. We conduct an in-depth study
of its impact at core level, cache level, and NoC level.

d. We also model and study the impact of a packet re-transmission
technique for NoC that works on the principle of Automatic
Repeat Request (ARQ).

e. We prove that the existing mitigation techniques have un-
realistic assumptions and unacceptable latency overheads.
Hence we emphasize the need for having a cost effective
mitigation technique for packet header attacks.

2 BASELINE TCMP ARCHITECTURE

Internal architecture of tile and router in a 4x4 TCMP is shown in
Fig. 2. A tile consists of Processor (P), L1 Instruction Cache, L1 Data
Cache, L2 Cache, L1 Cache Controller (L1CC), L2 Cache Controller
(L2CC), Tile Controller (TC), and a Network Adapter (NA). L1CC
and L2CC provide interface to the corresponding caches while TC
act as an intermediary between the cache controllers and NA. Since,
L2 cache is shared and distributed among all 16 tiles, total sets in L2
cache are uniformly partitioned across tiles in sequential fashion.
NoC router consists of Input Port buffers, Routing Unit, Virtual
Channel Allocator (VC Allocator), Switch Allocator, and a Crossbar.

Whenever there is an L1 cache miss, the L1CC forwards it to TC,
and the TC computes corresponding L2 tile number. The request is
served locally by forwarding to L2CC if the L2 tile number is same
as of the tile number of TC. Otherwise, the request is forwarded
to NA in order to contact the remote tile. NA, based on message
type (L1 miss request, L2 miss reply, L1 write back etc) creates and
forwards the packet to router attached to the tile. A miss request
packet consists of a single head flit (H), whereas a reply packet
consists of a head flit followed by multiple body flits and a single
tail flit (H, B1, B2, ..., Bn, T). NoC follows wormhole switching
where body flits follow head flit. Router computes the appropriate
output port based on underlying routing technique.

We assume the flit format as shown in Fig. 3. The control channel
that runs in parallel to the flit channel carries common prefixes,
namely, FT and VCID for the head flit and other flits of the same
packet. FT distinguishes the type of the flit. VCID is assigned for
head flit specifying the VC identifier the head flit should occupy
upon reaching the downstream router. VCID is then inherited by
all the subsequent flits of the same packet. PID uniquely identifies
a packet in the network. The address of the source tile and the

Packet Header Attack by Hardware Trojan in NoC based TCMP and its Impact Analysis

FT | VvCID " PID | SID | DID| PL | TYPE| PR |CMD | ADDRESS

FT | vep DAT

Figure 3: Head Flit and Body Flit Format

Figure 4: Internal Architecture of Input Port Buffers

destination tile is given by SID and DID, respectively. PL indicates
how many non-head flits are there in a given packet. Since NoC
carries all categories of packets exchanged between tiles, the TYPE
field specifies the packet type. Every packet is assigned a priority in
the PR field, used for ranking packets during port conflicts. CMD can
be utilized for storing additional metadata about a packet. ADDRESS
field carries the physical address that needs to be communicated
between memory levels.

Input port of a router consisting three VCs is shown in Fig. 4.
Here, each VC is a FIFO and can accommodate a maximum of
three flits at a time. Every VC separately maintains a control buffer
consisting Status (S), Packet Length (PL), Virtual Channel Identifier
(VCID), and Output Port (OP). When a flit reaches a router, the input
port demultiplexer extracts the VCID from the common prefix of the
incoming flit and places the flit into the designated VC. If it is a head
flit, the PL field of the flit is copied to the PL of the control buffer,
and S is set to busy. The route computation unit extracts DID from
the head flit to compute the next outgoing port and OP is updated
accordingly. Hence, once the routing is done for a head flit, then
OP holds the next outgoing port information for all the subsequent
flits of that packet. Therefore, even if the head flit advances to the
next router, other flits still inherit OP and move forward thereby
facilitating wormhole routing. When the tail flit leaves the router,
the OP field get reset.

For every head flit, the VC allocator allocates a new VC based
on the VC availability at the downstream router. VC availability
of downstream routers is updated every cycle by credit exchange
between the neighboring routers. PL gets decremented for every
non-head flit arriving in the VC and PL counter reaching zero
indicates end of a packet and S is set to free.

3 THREAT MODEL

Though data encryption (encrypting payload fields of body and tail
flits) is gaining popularity in NoC, head flit is forwarded through
the network in an un-encrypted format due to the essential require-
ment of its contents by the intermediate routers for taking routing
decisions. This unavoidable plain text transmission of the head flit
makes it vulnerable to HT attacks. In this study, we assume the
HT as a small circuit mounted on the input buffers of one of the
router. The HT attack, which is randomly triggered, manipulates
the head flit when it is residing in the input port VC of the HT
infected router. Once the OP and VCID is computed and updated by

NOCS ’21, October 14-15, 2021, Virtual Event, USA

0 1 2 3

- Genuine Head Flit

Modified Head Flit

Random Node

Figure 5: NoC Packet with SID=4 and DID=15 is changed to
DID=3 by HT at Router 5

route computation and VC allocator, respectively, the HT modifies
DID field of the L1-cache miss request packets. To facilitate this,
the HT checks the TYPE field of the head flit and if it is an L1 miss
request packet, it modifies the packet’s DID to a random DID such
that the new DID can be still be reached by underlying XY routing
technique without any turn violations. We choose L1 miss request
packet for HT attack because L1 miss penalty impacts processor
throughput to a larger extent.

We take an illustrative example to explain HT and its working
using NoC given in Fig. 5. We assume that the router in tile 5 is HT
infected. Consider an L1 miss occurring at tile 4. It generates an L1
miss request packet, injects it into router 4 and is to be routed to
destination tile 15. Therefore, the DID in the head flit is 15 (1111
in binary). As per XY routing, this packet passes through router
5.1f the HT in 5 is already triggered, it modifies DID to a random
router number, for instance 3 (0011 in binary). Since the HT change
the DID after the routing and VC Allocation in router 5, the packet
moves to 6 (original path to DID=15). However, at router 6 routing
is done for DID=3. Accordingly, the packet takes a south turn at
router 7, reaches router 3 and subsequently gets ejected to tile 3.

Whenever an L1 miss request packet reaches a tile, it extracts
the ADDRESS field in the head flit. As per cache memory design
concepts, address bits are split into Tag, Index, and Offset. The most
significant bits of Index represent the destination tile address. In
the mentioned example, the destination tile value calculated from
ADDRESS at tile 3 does not match with DID of the head flit. Hence,
the packet is dropped at tile 3 without any further processing.
Moreover, the source of the packet (tile 4) expects a cache miss
reply from tile 15 which never comes back, while tile 15 is unaware
about such happenings.

We observe that changing DID to a random DID can cause XY
routing turn violations and leads to a deadlock in due course. In
the example discussed before, note that if the DID is changed to
any router residing in the same or the right side column of the
router 5, the packet can still reach the new DID simply by following
XY routing without any turn violation. On the contrary, if DID
is changed to any router in the left side column(s) of router 5, it
needs "U’-turns or prohibited turns in order to reach the new DID.
For instance, if the HT modifies DID to router 8, the packet that
reaches router 6 has to be forwarded back to 5 in order to reach
router 8. This is a violation of XY routing leading to deadlock. To

NOCS °21, October 14-15, 2021, Virtual Event, USA

Vedika J. Kulkarni, Manju R., Ruchika Gupta, John Jose, Sukumar Nandi

Table 1: Workload Details of SPEC CPU 2006 Benchmark Mixes

Workload Benchmark Name (Number of Instances) Miss Characteristics of Benchmarks
WLI1 soplex (8) cactusADM (8) 100% High MPKI

WL2 gromacs (8) hmmer (8) 100% Low MPKI

WL3 soplex (4) | cactusADM (4) | gromacs (4) | hmmer (4) | 50% High MPKI, 50% Low MPKI

WL4 soplex (6) | cactusADM (6) | gromacs (2) | hmmer (2) | 75% High MPKI, 25% Low MPKI

WL5 soplex (2) | cactusADM (2) | gromacs (6) | hmmer (6) | 25% High MPKI, 75% Low MPKI

avoid this, we design the HT to ensure that the modified DID never
leads to turn restriction violations in XY routing. This selective DID
modification guarantees a deadlock free routing and makes it really
challenging to detect and localize the HT at the same time. In our
threat model, even though HT is always active, it gets triggered and
modifies packet header only with probability p while stay dormant
otherwise, whose implementation details are discussed in the next
section.

4 EXPERIMENTAL SETUP

We model a 16-tile TCMP with a 4x4 mesh NoC using gem5 [3],
an event driven and cycle accurate simulator. Each tile consists
of an Out-of-Order CPU with ALPHA architecture and dynamic
instruction scheduling. Two level cache hierarchy; 16 KB, 4-way
set associative private L1 Instruction, Data cache each and a 2 MB,
8-way set associative shared L2 cache is used. We use an 8 GB
main memory. SNUCA technique maps L2 cache sets to all the 16
tiles. Ruby module integrated in gem5 is used to simulate mem-
ory module and two level MESI protocol models cache coherence
operations. NoC operations are modelled in Garnet 2.0 integrated
with gem5. NoC routers use XY routing algorithm and have three
VCs per input port. We use single flit request packet, 5 flit reply
packets, and 64-bit flit channel. In our simulations, L1-Miss Status
Holding Register (MSHR) per core can accommodate 256 entries
and Reorder Buffer per core has 192 entries.

We consider the following architectures for evaluation:

o NHT: Baseline architecture without any HT.

o HT:Baseline architecture with an active HT located at router
5 having an attack probability of p=0.1.

e HTR1: Trojan model HT defined above and having an L1
cache MSHR level re-transmission using ARQ technique
with timer expiry T1=1000 clock cycles.

e HTR2: Trojan model HT defined above and having an L1
cache MSHR level re-transmission using ARQ technique
with timer expiry T2=200 clock cycles.

The timers values T1 and T2 used in re-transmission models,
HTR1 and HTR2 are empirically fixed based on the experimental
analysis of the worst case miss penalty for L1 miss requests that
result in L2 miss and L2 hits, respectively. This paper focuses on
the scenario with HT fixed at router 5. Router 5 is central router
with larger traffic passing through it. This allows us to study the
worst case results for HT of this nature.

It can be noted that, although the HT is at the NoC, its impact is
seen on the core and cache metrics dominantly, as will be discussed
in Section 5 in detail. Due to this, the impact is not very visible with

synthetic traffic patterns since they do not represent real request-
response traffic. Hence, we analyze HT behaviour with the real
application workloads consisting SPEC CPU 2006 benchmarks [9].

Based on the nature of benchmark and its miss rate, we cate-
gorize the benchmarks into High MPKI (greater than 20 misses
per 1000 instructions) and Low MPKI (less than 10 misses per 1000
instructions). Based on the experimental values of MPKI obtained
[9], we pick soplex (38) and cactumADM (24) under High MPKI
group together with gromacs (9) and hmmer (3) under Low MPKI
group. To run a simulation on a 16-tile TCMP, an application has to
be scheduled in each core for the execution. Accordingly, we create
workloads, each of which consists of 16 benchmark instances. We
setup five workloads classifications, namely, WL1, WL2, WL3, WL4,
and WL5 as shown in Table 1. During simulation, the execution is
first fast forwarded for 1,000,000 instructions followed by detailed
execution of 500,000 instructions to collect the core, cache, and
NoC statistics using for each of the mentioned four architectures.
After the fast forwarding phase, HT in router 5 is activated for a
period of 10 consecutive cycles for a window of 100 cycles while
maintaining HT attack probability p=0.1.

5 EXPERIMENTAL RESULTS

In this section, we analyze the impact of the packet header attack
by the proposed HT using various TCMP performance metrics
including instruction execution throughput, number of L1 cache
misses and its average miss penalty, NoC packet classification, and
average packet latency in comparison with NHT, HTR1, and HTR2
architectures.

5.1 Impact on Core

Reorder Buffer (ROB) plays an important role in ensuring in-order
commit of instructions in speculative dynamic scheduled out-of-
order processors. ROB gives an illusion to the user that the program
executes in-order. An instruction is issued only if two necessary
conditions are met. (i) a free entry available in ROB (ii) a free reser-
vation station entry in the functional unit where the operation is to
be executed. At any given point in time, the ROB holds all instruc-
tions that are issued, yet not committed. A completed instruction
gets committed only when it reaches the head of ROB.

LOAD instructions accessing L1-D cache may encounter a cache
miss that leads to an NoC packet creation. As HT is attacking a
fraction of these L1 miss request packets, there are adequate chances
that some of the issued LOAD instructions with an ROB entry
get affected by HT attack. The HT disallows the L1 miss request
packet to reach its correct destination and consequently miss reply
packet is not created. Hence, the ROB entry of HT impacted LOAD

Packet Header Attack by Hardware Trojan in NoC based TCMP and its Impact Analysis

NOCS ’21, October 14-15, 2021, Virtual Event, USA

NHT s HT s HTR1 C——— HTR2 === NHT — HT mssm HTR1 3 HTR2 oo
g NHT-5 =xxx=3 HT-5 s HTR1-5) HTR2-5 o=
= 100]
2c 2=
89 =< 100 F F o
= 53 90 s Kl # M #
E sof 1 =E KB | L
50 35 80 f K| i -l
25 I ;] 82 # Kl Kl o Kl
35 70 55 EL | 8 LR
82 @o 70r E 8 |
TE - | =g KR T | OB
aF 80 SE ool ELE | 8 o RN
R 1 @z 40 f f i R
nz f R % § i ik %
CE 20 1 88 = § & B #
EE = i i i i
Ee 10F 1 8% 10 Kl 8 Hl |
g g i i i i
o LMl | | ‘ Wil 5= I I &l Ll
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 z WL1 wL2

Core Number

(a) Core-wise analysis for WL3

Workload

(b) Workload wise analysis

Figure 6: Comparison of final ROB update across various architectures. The height of the bar indicates when the ROB is
updated last, as a fraction of instruction execution window.

NHT oo HT s HTR1 O HTR2 o NHT — HT s HTR1 ———= HTR2 oo
2 NHT-5 ==x=x=3 HT-5 xxxx3 HTR1-5 —— HTR2-5 =3
I 0 n il 2 T T T
1.8 l 18 " o
- <]
1.6 J
1.6 i -
1.4 14 i
1.2 of 12 §
g 1 S) 3 8 sh;
o I g K 8 1 |
08 0.8 K o s
06 - 06 El 8 g
0.4 0.4 K R
02 f 0.2 i E
0 I ‘ ‘ 0 K |
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 WL1 wL2 WL5

Core Number

(a) Core-wise analysis for WL3

Workload

(b) Workload wise analysis

Figure 7: Comparison of average IPC across various architectures

instruction remains forever in the ’issue’ state and never advances
to ‘complete’ state. It incurs an indefinite wait for Head of the ROB
which in turn blocks commit of other ROB entries. There can be
other subsequent instructions having data dependence over LOAD.
A stalled LOAD instruction also introduces indefinite waiting for
those data dependent instructions in their respective functional
units to receive the data that is never written back. On the other
hand, instructions that are non-dependent on LOAD are completed,
however, could not commit as ROB commit is an in-order process.
Consequently, instruction issue gets stalled when ROB becomes
full which eventually brings down the core to a complete halt.
Fig. 6 shows the comparison of final ROB update time represented
as a fraction with in the execution time window. Bar touching
100 represents ROB is updated till the end of execution indicating
absence of stall during instruction issue. The final update status of
ROB in various cores of WL3 is given in Fig. 6a. We observe that
all cores except 5, 11, and 12 report their last ROB update at a very
early stage in execution time (refer low HT bar in blue). Since HT
is mounted on router 5, packets from 5 are not impacted. We also
find that during the execution window, L1 miss request packets

generated by tile 11 and 12 do not pass through router 5, when HT
is in attack mode. Hence, ROB is not getting stalled in these cores.
similarly, we also study the final ROB update statistics across all five
workloads and the results are shown in Fig. 6b. Across all workloads,
from the average final update of ROB across all cores over various
architectures (NHT, HT, HTR1, HTR2) and the final ROB update of
tile 5 across various architectures (NHT-5, HT-5, HTR1-5, HTR2-
5) we can see that HT leads to stalling of application very early
bringing the application to complete halt where as application in
core 5 is running without any trouble.

We know that ROB level stalling leads to drastic reduction in
number of instructions committed in the execution window. In-
struction per Cycle (IPC) is a standard indicator used to analyze
the performance of a core. We measure the IPC across all the 16
cores of WL3 and plot the results in Fig. 7a. We can notice that in
NHT (architecture without any HT), applications with Low MPKI
like hmmer running on cores 1, 4, 9, 12 and gromacs running on
cores 3, 6, 11, 14 show high IPC (above 1.8) where as applications
with high MPKI like soplex running on cores 0, 5, 8, 13 and cactu-
SADM running on cores 2, 7, 10, 15 show low IPC (below 1.3) as

NOCS °21, October 14-15, 2021, Virtual Event, USA

160

Vedika J. Kulkarni, Manju R., Ruchika Gupta, John Jose, Sukumar Nandi

140

P-NHT s P-HT mmmmm P-HTR1 ——— P-HTR2 === M-NHT == M-HT =xxx3 M-HTR1 ——— M-HTR2 ===

6000

5250

120

100

4500

- 3750

80

- 3000

Average Miss Penalty [P] (Cycles)

60
40 b M
20 |-
0 BRI T
2

7

- 2250
- 1500

- 750

8 9 10 " 12 13 14 15

Core Number

Figure 8: Core wise L1 cache miss statistics of WL3. (i) Y-axis on LHS: Average L1 cache miss penalty, (ii) Y-axis on RHS:
Number of L1 cache misses generated. Bars with prefix P’ - average miss penalty, prefix M’ - L1 cache misses

P-NHT = P-HTR1 3 M-NHT &= M-HTR1 C——
P-HT mmmm P-HTR2 m==m M-HT == M-HTR2 c===3

160 : : ‘ : ‘ 70000
7 140 a 61250
8] -
& 120 5 52500
T -
= 100 43750 S
S 2
S 80| 35000 @
o 0
" =
£ ey 26250 -
‘é’; 40 1{ 17500
[
z 20} 1{ 8750
0 0
WLA wL2 WL3 wL4 WL5
Workload

Figure 9: Average Miss Penalty for all Workloads

expected. When HT is activated these IPC values dip significantly
except in core 5. But if we do re-transmissions of lost packets, we
could improve IPC. We can also observe that where ever there is an
ROB level stall (low HT bars in Fig. 6a) there is a a proportionate
reduction in IPC (low HT bars in Fig. 7b).

Based on the experiments we conduct across various workloads,
we summarize the average IPC across all cores and IPC of core 5
independently in refer Fig. 7a. The similar trend of ROB update
and its correction in IPC value can be observed here too. Tile with
HT infected router is benefited significantly while all other cores
are kept busy waiting to receive the response against the miss
request packet that is eventually dropped at a wrong destination
tile. Therefore, we deduce that the DID modification by an HT
mounted on an NoC router can create serious IPC impact in cores.
In this way Trojan infected NoC can affect performance of cores
that pass all hardware security tests.

Ideally, an NoC based TCMP is assumed to have a lossless com-
munication network and considers no instance of an HT. Even
though re-transmission is a costly approach in NoC based systems,
we model the architectures HTR1 and HTR2 to show how much IPC
improvement we gain if we could afford a re-transmission circuit.
Because of the random nature of HT we see that almost 99% of lost
packets upon re-transmission was not impacted by the HT.

5.2 Impact on Cache

We study the HT impact at cache level by analyzing L1 cache miss
penalty and number of L1 cache misses generated. L1 cache miss
penalty is the additional number of cycles needed to fetch the
missed data block into the L1 cache from L2 or main memory.

Since HT impacts only L1 cache miss packets, the infected packets
are dropped after reaching the wrong destination tile. Because of
this, the HT impacted request packets never reach the original
destination tile and hence reply packets are not generated. This
leads to ROB level stalling of instructions as we discussed before.

Fig. 8 shows core wise L1 cache miss statistics of WL3. We plot
two parameters here for each of the four architectures. Y-axis on
left side shows the average L1 cache miss penalty and the data is
plotted with solid bars. Y-axis on right side shows the number of
L1 cache misses generated and the data is plotted with dotted bars.
We can see that the number of cache misses is significantly reduced
in HT architecture as instruction execution itself is stopped in the
core leading to zero access to D-cache. This reduction in number
of cache misses is clearly visible on the cores 0, 8, and 13, where
high MPKI benchmark soplex is running and on the cores 2, 7,
10, and 15, where high MPKI benchmark cactusADM is running.
Cores showing higher miss penalty in NHT are those that run
low MPKI benchmarks hmmer and gromacs, however they have a
significant fraction of L1 misses resulting in L2 misses. We do not
count miss penalty for L1 miss request that are impacted by HT
and are subsequently dropped.

Similarly, we can see that when re-transmission is enabled (HTR1
and HTR2), packet stalling is reduced thereby giving chance for
more instructions to execute and subsequently more cache misses
are generated. However, due to the re-transmission, the average
miss penalty is increased due to the high round trip latency for
HT impacted miss requests. Since HTR1 uses a 1000 cycles expiry
timer, its miss penalty is higher than HTR2 that uses 200 cycle
expiry timer. We can also observe that the average miss penalty
and number of misses in core 5 is same for all the four architectures
which shows that core 5 is not impacted at all whereas all other
cores suffer from cache performance degradation.

We conduct analysis across various workloads and summarize
the L1 cache miss statistics in Fig. 9. For ease of reference we use
solid bars to represent L1 cache miss penalty and dotted bars to
represent count of L1 cache misses. The number of L1 cache misses
generated in various architectures is inline with the workload char-
acteristics discussed in the last column of Table 2. We also conduct
a study on cache memory related packets in NoC and its classifica-
tions for each of the workload given in Table 3. We observe that
WL2 has more L2 to main memory traffic and vice versa than other
workloads which indicates that a bigger fraction of L1 cache misses
reach main memory. This leads to higher miss penalty for WL2
under all four architectures and clearly observed in Fig. 9.

L1 Misses [M]

Packet Header Attack by Hardware Trojan in NoC based TCMP and its Impact Analysis

NOCS ’21, October 14-15, 2021, Virtual Event, USA

Table 2: Detailed Classification of L1 Miss Request Packets for all Workloads
A: Total generated in NoC, B: Passing through HT Router, C: Modified by HT Router

Workload NHT HT HTR1 HTR2

A B C A B C A B C A B C

WL1 157060 11756 0 24476 363 23 135659 8609 683 147407 10460 791

WL2 14623 1109 0 7538 386 26 14601 1203 99 14327 1134 85

WL3 95500 6093 0 19741 422 24 88596 5657 428 94160 6371 497

WL4 142779 12617 0 6786 317 25 122833 9560 832 126746 8995 733

WL5 60346 4850 0 17880 428 26 48118 2501 125 56067 3984 207

Table 3: NoC Packet Classification (in %) between Memory LNHT LHTRA PNHT PHTR
Hierarchies I-HT mmmmm |-HTR2 === P-HT oo P-HTR2 oo
2 ‘ 160
WL Litol2 L2toLl L2toMM MMtoL2 Others 1.75 140 g
- 2
WL1 41.9 41.9 4.4 4.4 7.5 15 T 120 e
WL2 33.3 33.3 9.5 9.5 14.5 1.25 100 ni
WL3 409 40.9 3.9 3.9 10.4 s o0
(o}
WL4 412 412 33 33 10.9 = sl B w 8
WL5 39.9 39.9 4.3 4.3 11.7 ’ =
05 | 0 5
0.25 | 20 2
5.3 Impact on NoC 0 0

Since our HT is designed to act on L1 cache miss request packets
alone, we categorize the NoC packets in all the workloads to find
out the fraction of such packets among the total NoC traffic. We
comprehend our study on NoC packet classification in Table 3 and
find that L1 to L2 traffic (L1 miss request packets) constitutes 33%
to 42% of overall NoC traffic. This variation across workloads is
due to the variation in spatial and temporal locality of benchmarks
constituting various workloads. We further analyze the number of
packets passing through the HT router and those that are impacted
by the HT leading to DID modification in all four architectures.
Table 2 summarises the findings. For each architecture, we list out
three parameters listed as A, B, and C in the table. A represents total
number of L1 miss request packet, B represents packets traveling
through HT router, and C represents the packets that are modified
by the HT router. We can clearly see that C is roughly 10% of
B which confirms out HT attack probability of p=0.1. When re-
transmission is enabled, we see the performance and number of
packets getting closer to NHT model, showing that impact of HT
gets nullified.

We study the average packet latency in the network and find
that latency is not much impacted as the network is never getting
congested. However, HTR1 and HTR2 show up to 3% increase in
average packet latency due to the packet re-transmissions. We
observe that even though there is no noticeable latency variations
to packets at NoC level due to HT impact, we can see significant
performance degradation at cache and core levels. Thus even a side
channel analysis on NoC traffic will not reveal the real impact of
the proposed HT there by making it more difficult to diagnose from
network level parameters.

5.4 Hardware Overhead of the Trojan Circuit

To verify the proposed HT, we use ProNoC [14] that facilitates
prototyping of NoC based systems. We implement the proposed HT
in Verilog HDL with an integration to ProNoC for mounting the

p=0.05 p=0.10

Trojan Attack Probability
Figure 10: Impact of HT over IPC and L1 Cache Miss
Penalty for varying HT Attack Probabilities for WL3

p=0.15

HT attack. To analyze the timing constraints RTL code is generated
using ProNoC and fed to Cadence Incisive simulator for functional
verification. The designs are synthesised in 90nm technology using
Cadence Genus. Since the HT circuitry is not operating in the
critical path, we verify that the HT mounted NoC router meets all
timing constraints related to delay analysis compared to baseline
router without an HT. We observe that the area overhead of the
HT circuit is 0.9% of the baseline router. Power overhead is very
minimal as the HT remains dormant for 90% of time.

5.5 Impact on Variation in HT Attack
Probabilities

All the results mentioned so far is evaluated for HT attack prob-
ability p=0.1. From our experiments, we find that when packets
are re-transmitted it shows 99% success rate. To understand the
impact on IPC and average miss penalty, we model HT with three
varying attack probabilities; p=0.05, p=0.1, and p=0.15. We plot the
results in Fig. 10. IPC and average miss penalty value is same for
NHT architecture as HT attack probability is not impacting its
performance. We can observe that IPC value reduces with increase
in HT attack probability(refer I-HT bar) as ROB level stalling hap-
pen earlier with higher p. When p=0.15, IPC is reduced even for
HTR1 and HTR2 architectures. Upon careful analysis, we notice
that a small fraction of re-transmitted packets are again modified
by HT and are subsequently dropped at wrong destinations leading
to instruction stalling at ROB and hence lower IPC. We conclude
that the success rate of re-transmission is limited to maximum HT
attack probability p=0.1. As expected, the average miss penalty also
increases with the increase in HT attack probability.

NOCS °21, October 14-15, 2021, Virtual Event, USA

5.6 Challenges and Way Forward

NoCs are designed as lossless communication framework and tech-
niques for handling packet loss are not implemented in conven-
tional TCMP architectures. Since the HT forces packets reach wrong
destinations, it leads to packet discarding. We have already seen
the impact of such packet discard at the core, cache, and NoC levels.
These HTs operating at the NoC level has the potential to stall
applications running on cores that are considered to be secure. In
this paper we prove that even though cores are secure, HTs at NoC
can make cores vulnerable and it opens up big challenges to SoC de-
signers. By modelling NoC level ARQ technique, we prove that 99%
of re-transmitted packets are reaching their respective destinations
for an HT attack probability, p<0.1 due to the true random nature
of HT attack. However, this success rate with ARQ technique is lim-
ited to cases where the cores run low injection rate applications. We
observe that due to higher packet traffic, re-transmitted packets are
modified leading to application stalling for high MPKI workloads.
We have not looked into circuit level implementation challenges
of ARQ technique in NoC. The timer circuits and associated logic
may pose higher overheads and we feel ARQ based approach may
not be the best HT mitigation approach.

Mitigation techniques in recent research works [10] exploring
hash based authentication and secure key distribution cannot pre-
vent HT from modifying the packet. It can only help in the detection
of packets modified by HT. Moreover, implementation of crypto-
graphic and authentication techniques in NoC without considering
the latency of such secure hardware circuits limits its acceptability.
From an HT designer perspective, the attack probability should be
low enough for hiding the presence of HT. At the same time, HT
attack should be random and sporadic to make it difficult to detect.
Attack on NoC packets other than L1 cache miss request packets
and its mitigation is an interesting problem to work on.

6 CONCLUSION

This paper presented an HT attack on packet header and its impact
analysis in NoC based TCMP. We first identified the location in the
NoC router where the proposed HT can reside and manipulated
packet header contents without violating basic router operations.
We demonstrated the HT behaviour by modelling an HT that mod-
ified the DID field of packet which resulted in packet dropping at
wrong destination tile. We studied the impact of the proposed HT
at core level, cache level, and at NoC level. We also experimentally
proved that the proposed HT mounted on an NoC router holds
enough potential to degrade overall system performance by stalling
applications running on cores. Our results showed that in spite
of average reduction in overall system performance, the HT node
alone benefited with preferential access to shared resources in the
system. We evaluated the performance of ARQ based packet re-
transmission to understand its impact and feasibility. We proved
that due to unrealistic assumptions and expensive latency over-
heads the existing mitigation technique is ineffective to handle the
proposed HT attack.

Employing the re-transmission circuitry alongside every core is
way too expensive resort to safeguard the affected cores against
such HT attacks due to excessive area and power overhead. The nat-
ural alternative is to go for a cost effective technique that involves

Vedika J. Kulkarni, Manju R., Ruchika Gupta, John Jose, Sukumar Nandi

detection, localization, and shielding which holds a promising scope
as the future work.

ACKNOWLEDGMENTS

The authors acknowledge the support and funding from Informa-
tion Security Education and Awareness (ISEA) Project Phase-II,
MeitY, Government of India.

REFERENCES

[1] Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy. 2014. Fort-
NoCs: Mitigating the threat of a compromised NoC. In Design Automation Con-
ference. 1-6.

[2] Luca Benini and Giovanni De Micheli. 2002. Networks on chips: A new SoC
paradigm. Computer 35, 1 (2002), 70-78.

[3] Nathan Binkert et al. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1-7.

[4] Travis Boraten and Avinash Kodi. 2018. Mitigation of Hardware Trojan based
Denial-of-Service attack for secure NoCs. Journal of Parallel and Distributed
Computing 111 (2018), 24-38.

[5] Subodha Charles, Yangdi Lyu, and Prabhat Mishra. 2019. Real-time detection
and localization of DoS$ attacks in NoC based SoCs. In Design, Automation & Test
in Europe Conference & Exhibition. IEEE, 1160-1165.

[6] George Chrysos. 2014. Intel® Xeon Phi™ coprocessor - The Architecture. Intel
Whitepaper 176 (2014), 43-50.

[7] Abhijit Das, Sarath Babu, John Jose, Sangeetha Jose, and Maurizio Palesi. 2018.
Critical packet prioritisation by slack-aware re-routing in on-chip networks. In
International Symposium on Networks-on-Chip. IEEE, 1-8.

[8] Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra. 2019. System-on-Chip
Security: Validation and Verification. Springer Nature.

[9] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1-17.

[10] Mubashir Hussain and Hui Guo. 2017. Packet leak detection on hardware-trojan
infected NoCs for MPSoC systems. In International Conference on Cryptography,
Security and Privacy. 85-90.

[11] Manoj Kumar JYV, Ayas Kanta Swain, Sudeendra Kumar, Sauvagya Ranjan Sa-
hoo, and Kamalakanta Mahapatra. 2018. Run time mitigation of performance
degradation hardware trojan attacks in network on chip. In Computer Society
Annual Symposium on VLSI IEEE, 738-743.

[12] He Li, Qiang Liu, and Jiliang Zhang. 2016. A survey of hardware Trojan threat

and defense. Integration 55 (2016), 426-437.

R Manju, Abhijit Das, John Jose, and Prabhat Mishra. 2020. SECTAR: Secure NoC

using Trojan Aware Routing. In International Symposium on Networks-on-Chip.

IEEE, 1-8.

Alireza Monemi, Jia Wei Tang, Maurizio Palesi, and Muhammad N Marsono.

2017. ProNoC: A low latency network-on-chip based many-core system-on-chip

prototyping platform. Microprocessors and Microsystems 54 (2017), 60-74.

[15] Sadia Moriam, Elke Franz, Paul Walther, Akash Kumar, Thorsten Strufe, and

Gerhard Fettweis. 2021. Efficient Communication Protection of Many-Core

Systems against Active Attackers. Electronics 10, 3 (2021), 1-31.

Nachiketh Potlapally. 2011. Hardware Security in Practice: Challenges and

Opportunities. In International Symposium on Hardware-Oriented Security and

Trust. IEEE, 93-98.

Manju Rajan, Abhijit Das, John Jose, and Prabhat Mishra. 2021. Trojan Aware

Network-on-Chip Routing. Network-on-Chip Security and Privacy (2021), 277—

310.

[18] Anderson Camargo Sant’Ana, Henrique Medina, and Fernando Gehm Moraes.

2021. Security Vulnerabilities and Countermeasures in MPSoCs. IEEE Design &

Test (2021).

Johanna Sepulveda, Daniel Florez, and Guy Gogniat. 2015. Reconfigurable se-

curity architecture for disrupted protection zones in NoC-based MPSoCs. In

International Symposium on Reconfigurable Communication-centric Systems-on-

Chip. IEEE, 1-8.

Gaurav Sharma, Georgios Bousdras, Soultana Ellinidou, Olivier Markowitch, Jean-

Michel Dricot, and Dragomir Milojevic. 2021. Exploring the security landscape:

NoC-based MPSoC to Cloud-of-Chips. Microprocessors and Microsystems 84

(2021), 1-16.

Kan Xiao, Domenic Forte, Yier Jin, Ramesh Karri, Swarup Bhunia, and Mohammad

Tehranipoor. 2016. Hardware Trojans: Lessons learned after one decade of

research. ACM Transactions on Design Automation of Electronic Systems 22, 1

(2016), 1-23.

[22] Jiaqi Yao, Ying Zhang, Zhiming Mao, Sen Li, Minghui Ge, and Xin Chen. 2020.
On-line Detection and Localization of DoS Attacks in NoC. In Joint International
Information Technology and Artificial Intelligence Conference, Vol. 9. IEEE, 173~
178.

=
&

=
&

[16

(17

=
o)

[20

[21

	Abstract
	1 Introduction
	2 Baseline TCMP Architecture
	3 Threat Model
	4 Experimental Setup
	5 Experimental Results
	5.1 Impact on Core
	5.2 Impact on Cache
	5.3 Impact on NoC
	5.4 Hardware Overhead of the Trojan Circuit
	5.5 Impact on Variation in HT Attack Probabilities
	5.6 Challenges and Way Forward

	6 Conclusion
	Acknowledgments
	References

