CE 601 Numerical Methods

COURSE SCHEDULE

 Week Monday Tuesday Wednesday Thursday Friday Saturday Sunday 1 30/07/2014 Lecture 1 Introduction 2 04/08/2014  Lecture 2 Introduction to Numerical Methods 05/08/2014 Lecture 3 System of Linear Algebraic Equations-1 06/08/2014 No Class Friday Time Table 3 11/08/2014 Lecture 4 Gauss Elimination Method 12/08/2014 LU Decomposition 13/08/2014 Lecture 6 Banded Matrix and Thomas Algorithm 4 18/08/2014 Lecture 7 Drawbacks of Elimination Methods, Condition Number 19/08/2014 Lecture 8 Iterative Methods to Solve Linear Systems 20/08/2014 Lecture 9 Solution of Non-Linear Equations-1 5 25/08/2014 Lecture 10 Open Domain Methods 26/08/2014 Lecture 11 Secant Method; Muller's Method 27/08/2014 Lecture 12 Solutions of Polynomials; System of Non-linear Equations 6 01/09/2014 Lecture 13 Non-Linear Systems; Polynomial Approximations 02/09/2014 Lecture 14  Polynomials Approx. (Contd..) 03/08/2014 Lecture 15 Difference Polynomials; Multi-Variate Approx. 7 08/09/2014 Lecture 16 Cubic Splines 09/09/2014 Lecture 17 Cubic Splines; Method of Least Squares 10/09/2014 Lecture 18 Multi-Variate Regression; Num Difg. 8 15/09/2014 Lecture 19 Numerical Differentiation-1 16/09/2014 Lecture 20 Numerical Differentiation-2 17/09/2014 Lecture 21 Numerical Integration-1 9 23/09/2014 Mid Semester Exam 10 29/09/2014 No Lecture 30/09/2014 Lecture 22 Ordinary Differential Equations-1 01/10/2014 No Class Thursday Time Table 11 Holiday 07/10/2014 Lecture 23 Initial Value ODEs-1 08/10/2014 Lecture 24 IV-ODE-2:  Second Order Euler 12 13/10/2014 Lecture 25 IV-ODE-3:  Runge-Kutta Methods-1 14/10/2014 Lecture 26 Runge-Kutta Methods-2 15/10/2014 Lecture 27 Multi-Point Methods 13 20/10/2014 Lecture 28 Boundary-Value ODEs 21/10/2014 Lecture 29 Partial Differential Equations-1 22/10/2014 Lecture 30 Elliptic-PDE, Parabolic PDE 14 27/10/2014 Lecture 31 Classification of PDEs 28/10/2014 Lecture 32 PDE Characteristics; FDM for Parabolic PDEs 29/10/2014 Lecture 33 FDM for Parabolic PDEs; Hyperbolic PDEs 15 03/11/2014 Introduction to FEM-1 Holiday 05/11/2014 Rayleigh-Ritz; Weighted Galerkin 16 10/11/2014 Weighted Galerkin Method Steps 11/11/2014 Galerkin FEM-1 12/11/2014 1D Galerkin FEM-2 15/11/2014 Lecture 39 2D Galerkin FEM-1 17 17/11/2014 Lecture 40 2D Galerkin FEM-2 18/11/2014 Lecture 41 Eigen Values & Eigen Vectors 19/11/2014 Lecture 42 23/09/2014 End Semester Exam 18

Course Text Book:

1) Joe D. Hoffman (2001). Numerical Methods for Engineers and Scientists. Second Edition Revised and Expanded. MARCEL DEKKER, INC.

Reference Books:

1) Saumyen Guha and Rajesh Srivastava (2010). Numerical Methods for Engineering and Science. OXFORD HIGHER EDUCATION