Representation of Near-Semirings and Approximation of Their Categories

K. V. Krishna
Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati - 781 039, India.
E-mail: kv.krishna@member.ams.org

N. Chatterjee
Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110 016, India.
E-mail: niladri@maths.iitd.ac.in

AMS Mathematics Subject Classification (2000): 16Y60, 16Y30, 16Y99

Abstract. This work observes that S-semigroups are essentially the representations of near-semirings to proceed to establish categorical representation of near-semirings. Further, this work addresses some approximations to find a suitable category in which a given near-semiring is primitive.

Keywords: Near-semiring; S-Semigroup; Representation; Category.

1. Introduction

An algebraic structure $(S, +, \cdot)$ is said to be a near-semiring if

1. $(S, +)$ is semigroup with identity 0,
2. (S, \cdot) is semigroup,
3. $(x + y)z = xz + yz$ for all $x, y, z \in S$, and
4. $0x = 0$ for all $x \in S$.

The standard examples of near-semirings are typically of the form $\mathcal{M}(\Gamma)$, the set of all mappings on a semigroup $(\Gamma, +)$ with identity zero, with respect to pointwise addition and composition of mappings, and certain subsets of this set.
Two important subsets of $\mathcal{M}(\Gamma)$ are the set of constant mappings, and the set of mappings which fix zero. In fact, these two sets are subnear-semirings of $\mathcal{M}(\Gamma)$ in the usual sense. In an arbitrary near-semiring S, these substructures can be defined as constant part $S_c = \{ s \in S \mid s0 = s \}$ and zero-symmetric part $S_0 = \{ s \in S \mid s0 = 0 \}$. A near-semiring S is said to be a zero-symmetric near-semiring if $S = S_0$ ($S = S_c$, respectively). Another example of near-semiring that generalizes $\mathcal{M}(\Gamma)$ is: let $\Sigma \subseteq \text{End}(\Gamma)$, the set of endomorphisms on Γ, and define $\mathcal{M}_\Sigma(\Gamma) = \{ f : \Gamma \to \Gamma \mid f\alpha = \alpha f, \forall \alpha \in \Sigma \}$. Then $\mathcal{M}_\Sigma(\Gamma)$ is a near-semiring. Indeed, $\mathcal{M}(\Gamma) = \mathcal{M}_{\{\text{id}_\Gamma\}}(\Gamma)$.

A semigroup $(\Gamma, +)$ with zero o is said to be an S-semigroup if there exists a composition $(x, \gamma) \mapsto x\gamma$ of $S \times \Gamma \to \Gamma$ such that

1. $(x + y)\gamma = x\gamma + y\gamma$,
2. $(xy)\gamma = x(y\gamma)$, and
3. $0\gamma = o$, for all $x, y \in S, \gamma \in \Gamma$.

It is clear that Γ is an S-semigroup with $S = \mathcal{M}(\Gamma)$. Also, the semigroup $(S, +)$ of a near-semiring $(S, +, \cdot)$ is an S-semigroup.

For further details on near-semirings or S-semigroups one may refer [6, 8, 10, 11]. In what follows S always denotes a near-semiring, and an additive semigroup with zero is simply referred as semigroup.

In this work we first observe that the notion of S-semigroup gives an algebraic representation of near-semirings which further helps us to establish a categorical representation. This enables one to make use of the special properties of the near-semirings, and provides a practical approach to the problem of classifying certain classes of near-semirings. We also made an attempt to approximate categories in which a given arbitrary near-semiring is primitive, as an extension of the work of Holcombe [3] and that of Clay [2] for near-rings.

2. Representations

Let Γ, Γ' be two S-semigroups. A mapping $f : \Gamma \to \Gamma'$ is said to be an S-homomorphism if $f(x + y) = f(x) + f(y)$; $f(ax) = af(x)$ for all $a \in S$ and all $x, y \in \Gamma$. Near-semiring homomorphism can be defined in usual way.

*In the literature, zero-symmetric near-semirings are often referred as seminearrings [4, 6, 7, 10].
Following Jacobson [5], we define a representation of a near-semiring S as a homomorphism of S into the near-semiring of mappings of some semigroup with zero.

Let us recall the following embedding theorem from [4] before going to observe that S-semigroups are precisely the representations of near-semirings.

Embedding Theorem. For every near-semiring S there exists a semigroup Γ, such that S can be embedded in $\mathfrak{M}(\Gamma)$.

From this theorem one can ascertain that every near-semiring can be embedded into a near-semiring with unity.

Let $a \mapsto \bar{a}$ be a representation of S that acts on a semigroup Γ. Define a composition from $S \times \Gamma$ to Γ by $ax = \bar{a}(x)$, for $x \in \Gamma$ and $a \in S$, so that Γ is an S-semigroup. Hence, every representation of a near-semiring S determines an S-semigroup.

On the other hand, every S-semigroup Γ determines a representation of the near-semiring S. Indeed, for $a \in S$, define a mapping a_S on Γ by $a_S(x) = ax$ for all $x \in \Gamma$. Then $\tau : S \rightarrow \mathfrak{M}(\Gamma)$ given by $\tau(a) = a_S$ is a near-semiring homomorphism. Hence τ is a representation of S.

This discussion can be summarized as follows.

Theorem 2.1. The concepts of S-semigroup and representation of a near-semiring S are equivalent.

In the following we obtain a representation of near-semirings in a more general way using the theory of categories. Let \mathcal{C} be a category; write $X \in \mathcal{C}$ to indicate that X is an object of \mathcal{C}. For any $X, Y \in \mathcal{C}$, the set of morphisms in \mathcal{C} from X to Y is written as $[X, Y]_{\mathcal{C}}$. The category of sets and mappings is denoted by \mathcal{S}; \mathcal{S} denotes the category of semigroups and their homomorphisms. The category of S-semigroups and S-homomorphisms for a fixed near-semiring S will be denoted by \mathcal{S}_S. The contravariant representable functor $h_X : \mathcal{C} \rightarrow \mathcal{S}$ is given by $h_X(Y) = [Y, X]_{\mathcal{C}}, h_X(u) = vu$ for any $v : Z \rightarrow X$, where $u : Y \rightarrow Z$. The forgetful functor from \mathcal{S} to \mathcal{F} will be denoted by $\rho : \mathcal{S} \rightarrow \mathcal{F}$, and it is $\bar{\rho} : \mathcal{S}_S \rightarrow \mathcal{F}$. For other terminology and fundamental concepts of category theory that are used in the rest of the paper, one may refer [1, 9].

An object $X \in \mathcal{C}$ is said to be a semigroup object in \mathcal{C} if and only if there exists a functor $\sigma : \mathcal{C} \rightarrow \mathcal{S}$ such that the following functor diagram commutes.

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{h_X} & \mathcal{F} \\
\sigma \downarrow & & \downarrow \bar{\rho} \\
\mathcal{S} & \xrightarrow{\rho} & \mathcal{F}
\end{array}
\]

It is more practical to deal with morphisms rather than functors in some
circumstances. For that purpose, Lemma 2.2 is formulated in the similar lines of a theorem for group objects (cf. Theorem 4.1 of [1]).

Lemma 2.2. Let \mathcal{C} be a category with finite products and a final object e, and let $X \in \mathcal{C}$. Let η be the unique element of $[X, e]_{\mathcal{C}}$. X is a semigroup object in \mathcal{C} if and only if there exist morphisms $m \in [X \times X, X]_{\mathcal{C}}$, and $\varepsilon \in [e, X]_{\mathcal{C}}$ such that the diagrams

\[
\begin{align*}
X \times X \times X &\xrightarrow{m \times 1_X} X \times X \\
1_X \times m &\downarrow \\
X \times X &\xrightarrow{m} X
\end{align*}
\quad
\begin{align*}
X \times X &\xrightarrow{(\varepsilon \eta) \times 1_X} X \times X \\
\Delta &\downarrow \\
X &\xrightarrow{1_X} X
\end{align*}
\]

are commutative, where Δ is the ‘diagonal’ morphism.

Theorem 2.3. Let (X, σ) be a semigroup object in \mathcal{C}, a category with finite products and a final object. Then $[X, X]_{\mathcal{C}}$ is a near-semiring, say S, and for any $Y \in \mathcal{C}$, $[Y, X]_{\mathcal{C}}$ is an S-semigroup.

Proof. Let $S = [X, X]_{\mathcal{C}}$ and $a, b \in S$. By Lemma 2.2, there is a semigroup structure $(S, +)$ defined by $a + b = m\{a, b\}$, where $\{a, b\}$ is the unique morphism making the following diagram (1) commutative with $p_1, p_2 : X \times X \rightarrow X$ canonical projections, and m is obtained as in Lemma 2.2.

\[
\begin{align*}
X &\xleftarrow{p_1} X \times X \xrightarrow{p_2} X \\
&\xleftarrow{a} X \\
&\xrightarrow{b} X
\end{align*}
\quad
\begin{align*}
X &\xleftarrow{p_1} X \times X \xrightarrow{p_2} X \\
&\xleftarrow{a} X \\
&\xrightarrow{b} X
\end{align*}
\]

Clearly, S is a semigroup under the composition of morphisms in \mathcal{C}. Right distributivity follows from the commutative diagram (2), so that S is a near-semiring.

Again, since (X, σ) is a semigroup object in \mathcal{C}, for any $Y \in \mathcal{C}$, $\Gamma = [Y, X]_{\mathcal{C}}$ is a semigroup, where addition $+$ on Γ is given by $\alpha + \beta = m\{\alpha, \beta\}$ for $\alpha, \beta \in \Gamma$ and $\{\alpha, \beta\}$ is the unique morphism, such that the following diagram commutes.

\[
\begin{align*}
X &\xleftarrow{p_1} X \times X \xrightarrow{p_2} X \\
&\xleftarrow{\alpha} Y \\
&\xrightarrow{\beta} X
\end{align*}
\]
Define an action from $S \times \Gamma$ to Γ by $(a, \alpha) \mapsto a\alpha$, for $a \in S$ and $\alpha \in \Gamma$. By a similar argument to the first part of this proof we see that
\[(a + b)\alpha = a\alpha + b\alpha, \text{ and } (ab)\alpha = a(b\alpha)\]
for all $a, b \in S$ and $\alpha \in \Gamma$, so that Γ is an S-semigroup.

Given the situation of Theorem 2.3, we call $[X, X]_\mathcal{C}$ the endomorphism near-semiring of X in \mathcal{C}.

Remark 2.4. Let (X, σ) be a semigroup object in a category \mathcal{C} with finite products and final object. If $S = [X, X]_\mathcal{C}$ then there is a contravariant functor $\mu_X : \mathcal{C} \rightarrow S_S$ such that the following diagram commutes,

\[\begin{array}{ccc}
\mathcal{C} & \xrightarrow{b_X} & \mathcal{F} \\
\downarrow{\mu_X} & & \downarrow{\bar{\rho}} \\
S_S & \xrightarrow{\bar{\rho}} & \mathcal{F}
\end{array}\]

where $\bar{\rho}$ is the forgetful functor from S_S to \mathcal{F}.

Example 2.5. In the category of sets and mappings \mathcal{F}, semigroup objects are just semigroups. Then the endomorphism near-semiring of a semigroup Γ in \mathcal{C} is the set of all mappings of Γ into itself.

Example 2.6. In the category \mathcal{F}^* of pointed sets, let us consider the zero of semigroup objects Γ^* as distinguished element. The endomorphism near-semiring of Γ^* is the set of zero-preserving maps of Γ^* into itself. This near-semiring is zero-symmetric.

Example 2.7. Let Σ be a semigroup. The category \mathcal{S}_Σ, of Σ-sets, has objects as pairs (X, m), where X is a set and $m : \Sigma \times X \rightarrow X$ is a mapping with the property that $m(\alpha\beta, x) = m(\alpha, m(\beta, x))$ for all $x \in X$ and $\alpha, \beta \in \Sigma$. A morphism $f : (X_1, m_1) \rightarrow (X_2, m_2)$ is a mapping $f : X_1 \rightarrow X_2$, such that the following diagram commutes.

\[\begin{array}{ccc}
\Sigma \times X_1 & \xrightarrow{m_1} & X_1 \\
\downarrow{1_\Sigma \times f} & & \downarrow{f} \\
\Sigma \times X_2 & \xrightarrow{m_2} & X_2
\end{array}\]

The endomorphism near-semiring of X, a semigroup object in \mathcal{S}_Σ, is the set of mappings f of X into itself, such that $f(m(\alpha, x)) = m(\alpha, f(x))$ for all $x \in X$ and $\alpha \in \Sigma$. This example generalizes near-semirings of the form $\mathcal{M}_\Sigma(X)$ and S-semigroups.
Example 2.8. Let \mathcal{C}_1, \mathcal{C}_2 be two categories with \mathcal{C}_2 a subcategory of \mathcal{C}_1. The category $\langle \mathcal{C}_1, \mathcal{C}_2 \rangle$ is defined to have objects $f : B \rightarrow A$, where $B \in \mathcal{C}_2$, $A \in \mathcal{C}_1$ and $f \in [B, A]_{\mathcal{C}_1}$. A morphism from $f : B \rightarrow A$ to $g : C \rightarrow D$ is a pair (a, b) such that $bf = ga$, where $a \in [B, C]_{\mathcal{C}_2}$, $b \in [A, D]_{\mathcal{C}_1}$, i.e. a morphism from f to g can be given by a commutative diagram as below.

$$
\begin{array}{ccc}
B & \xrightarrow{a} & C \\
\downarrow{f} & & \downarrow{g} \\
A & \xrightarrow{b} & D
\end{array}
$$

Further, let \mathcal{C}_3 be a subcategory of \mathcal{C}_1 and define $\langle \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3 \rangle$ to have objects (f, f'), where $f : B \rightarrow A$, $f' : C \rightarrow A$ and $A \in \mathcal{C}_1$, $B \in \mathcal{C}_2$, $C \in \mathcal{C}_3$, $f \in [B, A]_{\mathcal{C}_1}$, $f' \in [C, A]_{\mathcal{C}_1}$; and morphisms from (f, f') to (g, g') are the commutative diagrams,

$$
\begin{array}{ccc}
B & \xrightarrow{f} & A & \xleftarrow{f'} & C \\
\downarrow{g} & & \downarrow{g'} & & \\
B_1 & & A_1 & & C_1
\end{array}
$$

where $A_1 \in \mathcal{C}_1$, $B_1 \in \mathcal{C}_2$, $C_1 \in \mathcal{C}_3$, $g \in [B_1, A_1]_{\mathcal{C}_1}$, $g' \in [C_1, A_1]_{\mathcal{C}_1}$. A natural extension of these ideas give a category $\langle \mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_k \rangle$, where \mathcal{C}_j is a subcategory of \mathcal{C}_1 for $j = 2, 3, \ldots, k$. In a more general case, suppose $F : \mathcal{C} \rightarrow \mathcal{C}'$ is an embedding functor, we can construct the category $\langle \mathcal{C}', F(\mathcal{C}) \rangle$.

As an example of the construction, let Σ be a semigroup and Σ' be a subsemigroup of Σ. There exists an embedding $F : \mathcal{F}_\Sigma \rightarrow \mathcal{F}_{\Sigma'}$, where \mathcal{F}_Σ (and $\mathcal{F}_{\Sigma'}$) is pointed Σ-sets (Σ'-sets respectively). Let X be a semigroup object of \mathcal{F}_Σ and Y a subsemigroup of X which is also a semigroup object of $\mathcal{F}_{\Sigma'}$. Then the endomorphism near-semiring of $(F(Y) \subseteq X)$ is the set of all mappings $f : X \rightarrow X$, such that $f(Y) \subseteq Y$, $f(m(x')) = m(x, f(x))$, $f(m(x)) = m(x, f(y))$ for all $x \in X, y \in Y, x' \in \Sigma'$, and $\alpha \in \Sigma$. These near-semirings are examples of an important class of near-semirings which deserves study in its own right.

Several other examples come in the same line. So far it is observed how the near-semirings arise in essentially the same way as endomorphism sets of semigroup objects in particular categories.

Let S be a near-semiring and \mathcal{C} be a category with finite products. An object X is said to be an S-semigroup object in \mathcal{C} if and only if there exist

1. a functor σ such that (X, σ) is a semigroup object in \mathcal{C}, and
2. a near-semiring homomorphism $\tau : S \rightarrow [X, X]_{\mathcal{C}}$.

In this case, (X, σ, τ) denotes an S-semigroup object in \mathcal{C}. An S-semigroup object (X, σ, τ) is said to be faithful in \mathcal{C} if and only if τ is one-one.

If \mathcal{C} is the category of sets and mappings then a semigroup object in \mathcal{C} is simply a semigroup and the concept of an S-semigroup in \mathcal{C} coincides with the
natural definition of an S-semigroup. Therefore, S-semigroups are special cases of the concept of S-semigroups in a category \mathcal{C}.

Theorem 2.9. Let S be a near-semiring and let \mathcal{C} be a category with finite products and final object. Then for $X \in \mathcal{C}$, X is an S-semigroup object in \mathcal{C} if and only if there exists a contravariant functor $\lambda : \mathcal{C} \rightarrow S_S$ such that the following diagram

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{h_X} & \mathcal{I} \\
\lambda \downarrow & & \downarrow \rho \\
S_S & \xrightarrow{\bar{\rho}} & S_S
\end{array}
\]

is commutative, where $\bar{\rho} : S_S \rightarrow S$ is the forgetful functor.

Proof. Suppose (X, σ, τ) is an S-semigroup object in \mathcal{C}. Let $Y \in \mathcal{C}$, and write $\Gamma = [Y, X]_{\mathcal{C}}$. Consider the structure of an S-semigroup to Γ as follows: define $s \cdot \gamma = \tau(s)\gamma$ for $\gamma \in \Gamma, s \in S$. Thus there exists a functor $\lambda : \mathcal{C} \rightarrow S_S$, such that $\lambda(Y)$ is the S-semigroup $\Gamma = [Y, X]_{\mathcal{C}}$.

Conversely, suppose λ exists, and that $\rho^* : S_S \rightarrow S$ and $\rho : S \rightarrow \mathcal{I}$ are forgetful functors. Then $(X, \rho^* \circ \lambda)$ is a semigroup object in \mathcal{C}. A near-semiring homomorphism $\tau : S \rightarrow [X, X]_{\mathcal{C}}$ is defined as follows. Since $\lambda(Y)$ is an S-semigroup, one may construct a near-semiring homomorphism $\bar{\tau} : S \rightarrow [h_X(Y), h_X(Y)]_{\mathcal{I}}$

for any $Y \in \mathcal{C}$. For each $s \in S$, the homomorphism $\bar{\tau}(s)$ induces a natural transformation $T_s : h_X \rightarrow h_X$. As a consequence of Yoneda lemma, one may find a unique morphism $g_s \in [X, X]_{\mathcal{C}}$ in natural correspondence with T_s. Now define $\tau : S \rightarrow [X, X]_{\mathcal{C}}$ by $\tau(s) = g_s$ for all $s \in S$. This gives the required near-semiring homomorphism.

Remark 2.10. It is possible to define an S-homomorphism between S-semigroups in the same category \mathcal{C}. For instance, given a near-semiring S and a category \mathcal{C} with finite products and final object, let $(X, \sigma, \tau), (Y, \sigma', \tau')$ be S-semigroups in \mathcal{C}. A morphism $f : X \rightarrow Y$ in \mathcal{C} is an S-homomorphism in \mathcal{C} if and only if

- for all $s \in S$ the following diagram commutes

\[
\begin{array}{ccc}
X & \xrightarrow{\tau(s)} & X \\
\downarrow f & & \downarrow f \\
Y & \xrightarrow{\tau'(s)} & Y
\end{array}
\]

- there exists a natural transformation $\xi : \sigma \rightarrow \sigma'$ such that the induced natural transformation $T_\xi : h_X \rightarrow h_Y$ corresponds via the Yoneda lemma to the morphism $f : X \rightarrow Y$ in \mathcal{C}.

Thus, one can define a category of S-semigroups and S-homomorphisms in a category with finite products.

3. Approximation Theorems

First we formulate the notions: transparent S-subsemigroups, minimality and primitivity in categories for near-semirings as an extension of those parallel notions for near-rings given by Holcombe [3]. Then we proceed to approximate categories in which the given near-semiring is primitive. Unless otherwise stated, in the following \mathcal{C} is a category with finite products and a final object, also there exists a forgetful functor $U : \mathcal{C} \rightarrow \mathcal{S}$.

Suppose (X, σ, τ) and (Y, σ', τ') are S-semigroups in \mathcal{C} and $u : Y \rightarrow X$ is an S-homomorphism in \mathcal{C}. We call (Y, u) an S-subsemigroup of X if and only if u is a monomorphism in \mathcal{C}, and $U(u)$ is an inclusion in \mathcal{S}. An S-subsemigroup (Y, u) of X is called transparent if and only if $[Y, X]_{\mathcal{C}} = \{ uf | f \in [Y, Y]_{\mathcal{C}} \}$, i.e. any morphism in $[Y, X]_{\mathcal{C}}$ can be decomposed into the composition of a morphism in the near-semiring $[Y, Y]_{\mathcal{C}}$ with u.

Let X be an S-semigroup in \mathcal{C} and $f \in [K, X]_{\mathcal{C}}$ a monomorphism, for $K \in \mathcal{C}$. We call (K, f) is a generator of X if and only if $U(f)$ is a set inclusion, and for every $a \in [K, X]_{\mathcal{C}}$, there exists $s_a \in S$ such that $\tau(s_a)f = a$. An S-semigroup X in \mathcal{C} is called \mathcal{C}-minimal if and only if given a nontrivial monomorphism $f \in [K, X]_{\mathcal{C}}$ with $U(f)$ a set inclusion, either (K, f) is a generator of X, or there exists a transparent S-subsemigroup (Y, u) of X such that f factors through u in the following way: there exists $f' \in [K, Y]_{\mathcal{C}}$ such that $U(f')$ is a set inclusion and $f = uf'$. Further, a near-semiring S is said to be \mathcal{C}-primitive for some \mathcal{C} if there exists a \mathcal{C}-minimal S-semigroup X in \mathcal{C} which is faithful.

Naturally there may exist near-semirings which are not \mathcal{C}-primitive for any \mathcal{C}. Though finding a suitable category \mathcal{C} such that given a near-semiring S is \mathcal{C}-primitive is difficult, it is often possible to find a category \mathcal{C} over which S can be represented in a useful way. For example there may be representations of X over \mathcal{C} such that $\tau : S \rightarrow [X, X]_{\mathcal{C}}$ is one-one. Now replace \mathcal{C} by other categories so that the representations are preserved, and at the same time to make the homomorphism τ nearer to being an isomorphism, which is clearly a desirable objective.

Let (X, τ) be an S-semigroup in \mathcal{C}, where $\tau : S \rightarrow [X, X]_{\mathcal{C}}$ the near-semiring homomorphism. Suppose $G = Aut_{S}(X)$, the group of all invertible S-homomorphisms in \mathcal{C}. Construct a category \mathcal{C}_G in which objects are the pairs (A, α), where $A \in \mathcal{C}$ and $\alpha : G \rightarrow [A, A]_{\mathcal{C}}$ is a semigroup homomorphism. A morphism ξ of \mathcal{C}_G, say $(A, \alpha) \xrightarrow{\xi} (B, \beta)$, is a morphism $\xi \in [A, B]_{\mathcal{C}}$ such that $\beta(g)\xi = \xi\alpha(g)$ for all $g \in G$.
Remark 3.1. \(\mathcal{C}_G \) is a category with finite products and final object. Moreover, there exists a forgetful functor \(\mathcal{U}_G : \mathcal{C}_G \to \mathcal{S} \).

The objects \(X \in \mathcal{C} \) may be equipped with the structure of an object \(X_G \in \mathcal{C}_G \) by defining \(X_G = (X, \text{id}_X) \).

Remark 3.2. \((X_G, \tau_G)\) is an \(S \)-semigroup in \(\mathcal{C}_G \), where \(\tau_G : S \to [X_G, X_G]_{\mathcal{C}_G} \) is defined by \(\tau_G(s) = \tau(s) \forall s \in S \). Moreover, if \(\tau \) is one-one then \(\tau_G \) is one-one.

Theorem 3.3. If \(X \) is \(\mathcal{C} \)-minimal then \(X_G \) is \(\mathcal{C}_G \)-minimal.

Proof. Let \(f_G \in [K_G, X_G]_{\mathcal{C}_G} \) be a monomorphism and \(\mathcal{U}_G(f_G) \) be a set inclusion. On forgetting the \(G \)-structure, we obtain a monomorphism \(f \in [K, X]_{\mathcal{C}} \). Since \(X \) is \(\mathcal{C} \)-minimal, there are two cases.

Consider the case when \((K, f)\) is generator of \(X \) in \(\mathcal{C} \). Suppose \(a_G \in [K_G, X_G]_{\mathcal{C}_G} \), and consider the corresponding morphism \(a \in [K, X]_{\mathcal{C}} \). There exists \(s_a \in S \) such that \(\tau(s_a) f = a \). Since \(\tau_G(s_a) = \tau(s_a) \) we have \(\tau_G(s_a) f = a \) and so \(\tau_G(s_a) f_G = a_G \). Hence \((K_G, f_G)\) is a generator of \(X_G \) in \(\mathcal{C}_G \).

On the other hand, suppose \((Y, u)\) is a transparent \(S \)-subsemigroup of \(X \) in \(\mathcal{C} \) and \(f' \in [K, Y]_{\mathcal{C}} \) is such that \(\mathcal{U}(f') \) is a set inclusion and \(f = uf' \). We turn \(Y \) into an object of \(\mathcal{C}_G \) as follows. Let \(g \in G \), then \(gu \in [Y, X]_{\mathcal{C}} \) and hence, by transparency of \(Y \), \(gu = uf_g \) for some unique \(f_g \in [Y, Y]_{\mathcal{C}} \). Define a mapping

\[
\beta : G \to [Y, Y]_{\mathcal{C}}
\]

by \(\beta(g) = f_g \) for all \(g \in G \). For \(g, g' \in G \) we have \(\beta(gg') = f_{gg'} \) and \(uf_{gg'} = gg'u = guf_{g'} = uf_gf_{g'} \), so that \(\beta \) is a semigroup homomorphism and hence \((Y, \beta)\) is an object of \(\mathcal{C}_G \). Now we shall prove that \((Y, \beta)\) is transparent \(S \)-subsemigroup of \(X_G \) in \(\mathcal{C}_G \). Let \((Y, \beta) \xrightarrow{u} X_G \) be any morphism in \(\mathcal{C}_G \). Then for each \(g \in G \), the following left side diagram is commutative. Since \(Y \) is transparent \(S \)-subsemigroup of \(X \) in \(\mathcal{C} \) we have \(\eta = uf \), for some \(f \in [Y, Y]_{\mathcal{C}} \), so that the outer square of the following right side diagram is equals to left side diagram and hence commutes.

\[
\begin{array}{ccc}
Y & \xrightarrow{\eta} & X \\
\beta(g) \downarrow & & \downarrow \beta(g) \\
Y & \xrightarrow{g} & X
\end{array}
\quad \quad \quad
\begin{array}{ccc}
Y & \xrightarrow{f} & Y \\
\eta \downarrow & & \downarrow \eta \\
Y & \xrightarrow{u} & X
\end{array}
\]

Note that the right hand square of the right side diagram also commutes and hence, because \(u \) is a monomorphism, the left hand square of right diagram commutes, i.e. \(\beta(g)f = f\beta(g) \) for all \(g \in G \), so that \((Y, \beta) \xrightarrow{f} (Y, \beta)\) is a morphism of \(\mathcal{C}_G \). Thus \((Y, \beta)\) is transparent in \(X_G \) in the category \(\mathcal{C}_G \). Finally,
the diagram

\[\begin{align*}
K_G & \xrightarrow{f_G} X_G \\
\downarrow f' & \downarrow u \\
(Y, \beta) &
\end{align*} \]

commutes in \(\mathcal{C}_G \) from similar considerations. Hence \(X_G \) is \(\mathcal{C}_G \)-minimal.

Though the results are valid with the semigroup structure of \([X,X]_\varphi\) in place of the group \(G \), by choosing the group \(G \) we could further narrow down the category to \(\mathcal{C}_G \). As we can embed \([X_G,X_G]_{\mathcal{C}_G}\) in \([X,X]_{\varphi}\), Theorem 3.3 gives us an approximation theorem without disturbing the special nature of the representation \(X \) of \(S \).

If \(X \) has any \(G \)-closed \(S \)-subsemigroup we can produce a better approximation to \(S \). Here, an \(S \)-subsemigroup \((Y, u)\) of \(X \) is referred as \(G \)-closed if and only if given \(g \in G \) there exists a unique \(f \in [Y,Y]_\varphi \) such that \(gu = uf \).

Remark 3.4. Since \(u \) is monomorphism, if \((Y, u)\) is transparent in \(\mathcal{C} \) then \((Y, u)\) is \(G \)-closed.

Lemma 3.5. Let \((Y, u)\) be a \(G \)-closed \(S \)-subsemigroup of \(X \) in \(\mathcal{C} \). Define \(G' = \text{Aut}_{S/\ker\tau'}(Y) \), where \(\tau' : S \rightarrow [Y,Y]_\varphi \) is the \(S \)-semigroup structure near-semiring homomorphism. There is an embedding functor \(F : \mathcal{C}_{G'} \rightarrow \mathcal{C}_G \).

Proof. \(F \) can be obtained by defining a semigroup monomorphism \(\theta : G \rightarrow G' \). For that, let \(g \in G \); then \(g \in [X,X]_\varphi \), \(g \) is invertible and \(\tau(s)g = g\tau(s) \) for any \(s \in S \). Also, since \((Y, u)\) is \(G \)-closed there is unique \(f \in [Y,Y]_\varphi \) such that \(gu = uf \). Define \(\theta : G \rightarrow G' \) by setting \(\theta(g) = f \), for \(g \in G \). We shall ascertain that \(f \in G' \). Since \(\theta(1) \) is the identity morphism on \(Y \), it follows that \(\theta(g) \) is invertible. To show that \(f\tau'(\bar{s}) = \tau'(\bar{s})f \) for all \(\bar{s} \in S/\ker\tau' \), we have to prove that \(f\tau'(s) = \tau'(s)f \) for all \(s \in S \). Since \(u \) is \(S \)-homomorphism in \(\mathcal{C} \), we have:

\[
uf\tau'(s) = gu\tau'(s) = g\tau(s)u = \tau(s)gu = \tau(s)uf = u\tau'(s)f
\]

and thus \(f\tau'(s) = \tau'(s)f \) for all \(s \in S \). It is easy to see that \(\theta \) is a semigroup monomorphism, as desired.

Let \((A, \alpha) \in \mathcal{C}_G\), so that \(\alpha : G' \rightarrow [A,A]_\varphi \) is a semigroup homomorphism. Set \(F((A,\alpha)) = (A,\alpha\theta) \) so that \(F((A,\alpha)) \in \mathcal{C}_G \), and \(F \) is an embedding functor.

Consider the category \(\mathcal{D} = \langle \mathcal{C}_G, F(\mathcal{C}_{G'}) \rangle \) (cf. Example 2.8 for notation). Note that this is a category with finite products, final object, and there exists a forgetful functor. The object \(X_G \in \mathcal{C}_G \) can naturally be equipped with the
structure, \(X_\ast \), defined to be \((F(Y) \subseteq X_G)\), and the near-semiring homomorphism \(\tau : S \rightarrow [X_\ast, X_\ast]\) is defined by \(\tau(s) = \tau(s) \) for all \(s \in S \). Thus \(X_\ast \) is an \(S \)-semigroup object of \(\mathcal{D} \). If \(X \) is faithful in \(\mathcal{C} \) then \(X_\ast \) is faithful in \(\mathcal{D} \). Further, if \(X_G \) is \(\mathcal{C}_G \)-minimal, then in a similar way to that of Theorem 3.3, one can finalize that \(X_\ast \) is \(\mathcal{D} \)-minimal.

This can be summarized as the second approximation theorem as follows:

Theorem 3.6. The object \(X_\ast \) of \(\mathcal{D} \) is an \(S \)-semigroup object and if \(X \) is faithful then \(X_\ast \) is faithful. Moreover, if \(X \) is \(\mathcal{C} \)-minimal then \(X_\ast \) is \(\mathcal{D} \)-minimal.

Further, if \(X \) has \(G \)-closed \(S \)-subsemigroups in \(\mathcal{C} \) then each of which gives an approximation theorem in the following way.

Theorem 3.7. Let \((Y_i, u_i)\) be \(G \)-closed \(S \)-subsemigroups of \(X \) for \(i = 1, 2, \ldots, k \) and \(G_i = \text{Aut}_{S/\tau_i}(Y_i) \) for each \(i = 1, 2, \ldots, k \). Let \(F_i : \mathcal{C}_{G_i} \rightarrow \mathcal{C}_{G_i} \) be an appropriate embedding functor for each \(i = 1, 2, \ldots, k \). Consider the category \(\mathcal{D}_k = \langle \mathcal{C}_{G_i}, F_1(\mathcal{C}_{G_1}), F_2(\mathcal{C}_{G_2}), \ldots, F_k(\mathcal{C}_{G_k}) \rangle \).

If \(X \) is a \(\mathcal{C} \)-minimal, faithful \(S \)-semigroup in \(\mathcal{C} \), then \(X \) can be given the structure of a \(\mathcal{D}_k \)-minimal faithful \(S \)-semigroup in \(\mathcal{D}_k \).

References

