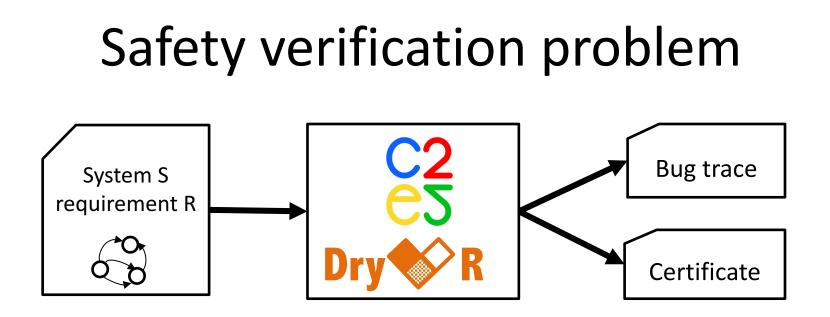


University of Illinois at Urbana-Champaign

Lecture 7 and Tutorial 4: Simulation-driven Verification

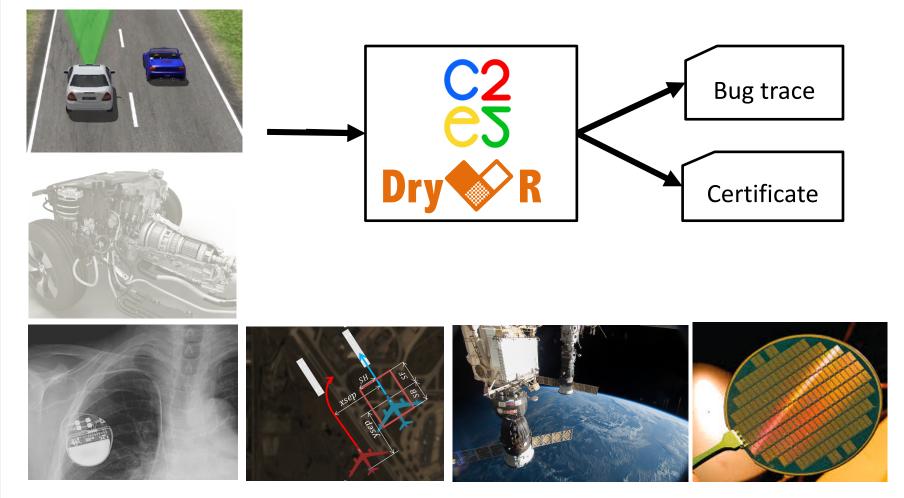
Sayan Mitra


Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana Champaign

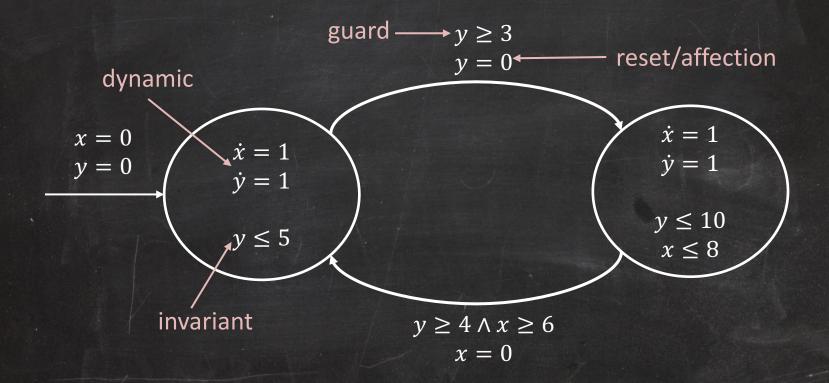
Is there a behavior of system S violating safety requirement R within time bound T?

Yes -> bug-trace -> design improvement

No -> safety proof -> certification

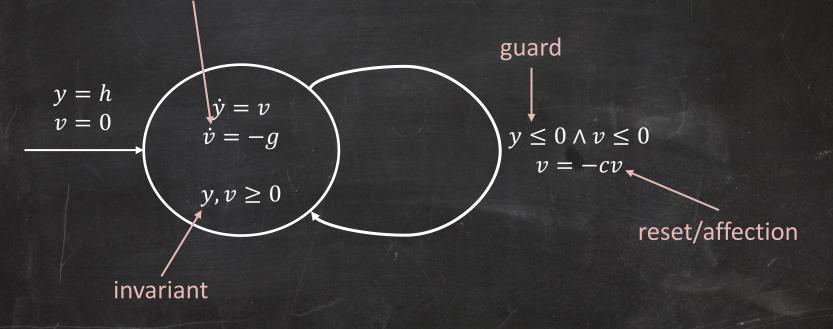


Is there a behavior of system S violating safety requirement R within time bound T?


Yes -> bug-trace -> design improvement

No -> safety proof -> certification

Safety verification problem



Recall: timed automata

Recall: bouncing ball

dynamic: general nonlinear function

Recall: bouncing ball

Avoid the Zeno behavior

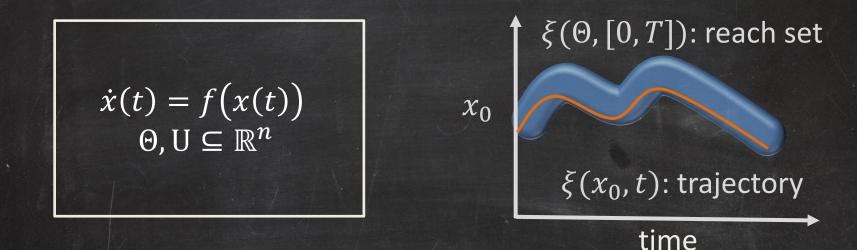
Summary of C2E2

- Input: hyxml file
- Properties: initial set + unsafe set
- Simulate and/or verification
- Plotter

Outline

Introduction and C2E2 demo

Model-based sensitivity


- Simulation-driven verification algorithm
- Discrepancy function
- Matrix measure and sensitivity
- More examples

Next lecture on Thursday:

 New modeling questions with DryVR Slides by Sayan Mitra (mitras@illinois.edu)

System models and notations

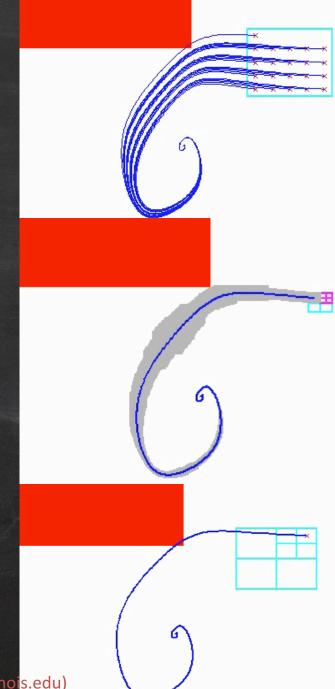
nonlinear dynamical model

Safety verification problem $\xi(\Theta, [0, T]) \cap U = \emptyset$?

Simulations to safety proofs

○ Given start ○ and target

• Compute finite cover $\cup_i B(x_i, \delta) \supseteq \Theta$

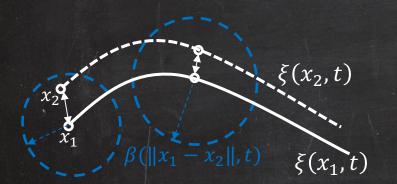

- Simulate from the center x_0 of each cover to get $\xi(x_0, \{t_1, \dots, t_k\})$
- Bloat simulation so that

 $\xi(x_0,.) \bigoplus \beta \supseteq \xi(B(x_0,\delta),[0,T])$

 \circ Check intersection/containment with U

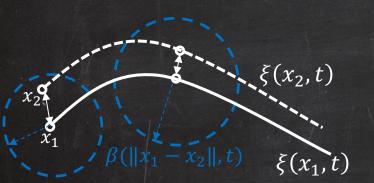
• Refine cover if needed and repeat ...

How to bloat or generalize simulations?



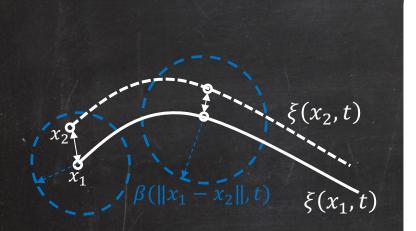
U

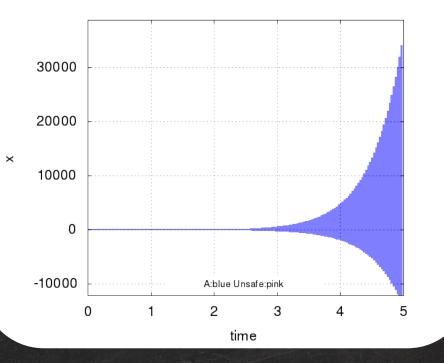
Brief history


2000	On Systematic Simulation of Open Continuous Systems	Kapinski et al.
2006	Verification using simulation	Girard and Pappas
2007	Robust Test Generation and Coverage for Hybrid Systems	Julius, Fainekos, et al.
2010	Breach, a toolbox for verification and parameter synthesis of hybrid systems.	Donzé
2013	Verification of annotated models from executions.	Duggirala <i>, Mitra,</i> Viswanathan

Main problem: How to quantify generalization?

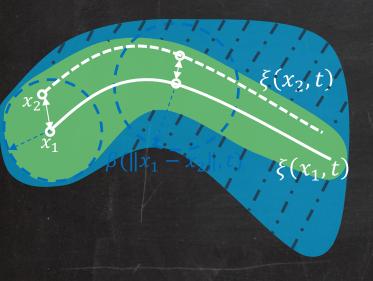
- Discrepancy formalizes generalization :
- Discrepancy is a continuous function β that bounds the distance between neighboring trajectories $\|\xi(x_1,t) - \xi(x_2,t)\| \le \beta(\|x_1 - x_2\|, t),$
- From a single simulation of $\xi(x_1, t)$ and discrepancy β we can over-approximate the reachtube


A simple example of discrepancy function

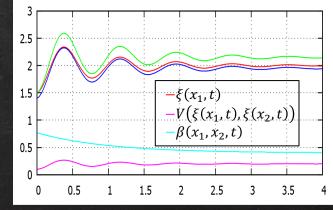


If f(x) has a Lipschitz constant L: ∀x, y ∈ ℝⁿ, ||f(x) - f(y)|| ≤ L||x - y||
Example: x = -2x, Lipschitz constant L = 2
then a (bad) discrepancy function is

 $\|\xi(x_1,t) - \xi(x_2,t)\| \le \|x_1 - x_2\|e^{Lt} = \beta(\|x_1 - x_2\|,t)$


A simple example of discrepancy function

 $\dot{x} = -2x$, Lipschitz constant $L = 2, \delta = 1$


What is a good discrepancy ?

General: Applies to general nonlinear fAccurate: Small error in β Effective: Computing β is fast (in practice)

Discrepancy quantifies sensitivity $\xi(B(x_0, \delta), [0, T]) \subseteq \xi(x_0, .) \bigoplus \beta$ reach set over-approximated by simulation and sensitivity

Definition. $\beta : \mathbb{R}^{2n} \times \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ defines a discrepancy of the system if for any two states x_1 and $x_2 \in X$, for any t, $\circ |\xi(x_1,t) - \xi(x_2,t)| \leq \beta(x_1,x_2,t)$ and $\circ \beta \to 0$ as $x_1 \to x_2$

Computing discrepancy

 $\begin{aligned} |\xi(x_1,t) - \xi(x_2,t)| &\leq e^{Lt} |x_1 - x_2| \\ \text{L: Lipschitz constant of } f(.) \\ \dot{x} &= -2x \text{ Lipschitz constant } L=2 \end{aligned}$

$$\begin{split} |\xi(x_1, t) - \xi(x_2, t)| &\leq e^{\mu t} |x_1 - x_2| \\ \mu: \text{ Matrix measure of Jacobian } J_f \\ \mu_p(A) &= \lim_{t \to 0^+} \frac{\left| |I + tA| \right|_p - \left| |I| \right|_p}{t} \\ \mu_p &= -2 \text{ for above linear system} \end{split}$$

Matrix measure for $A \in \mathbb{R}^{n \times n}$

Matrix norm

$$\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$
$$\|A\|_2 = \sqrt{\lambda_{max}(A^T A)}$$

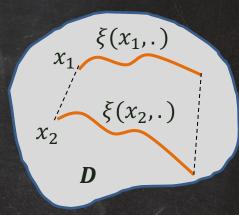
Matrix measure [Dahlquist 59]:

$$\mu(A) = \lim_{t \to 0^+} \frac{\|I + tA\| - \|I\|}{t}$$

2-norm: $\mu(A) = \lambda_{max} \left(\frac{A+A^2}{2} \right)$

Computing μ

Vector norm	Induced matrix norm	Matrix measure
$ x _1 = \Sigma x_j $	$\left A \right _1 = \max_j \Sigma_i \left a_{ij} \right $	$\mu_1(A) = \max_j (a_{jj} + \Sigma_{i \neq j} a_{ij})$
$ x _2 = \sqrt{\Sigma x_j^2}$	$\left A \right _2 = \sqrt{\max_j \lambda_j (A^T A)}$	$\mu_2(A) = \max_j \frac{1}{2} (\lambda_j (A + A^T))$
$ x _{\infty} = \max_{j} x_{j} $	$\left A \right _{\infty} = \max_{i} \Sigma_{j} a_{ij} $	$\mu_{\infty}(A) = \max_{i} (a_{ii} + \Sigma_{i \neq j} a_{ij})$


Table from: Reachability Analysis of Nonlinear Systems Using Matrix Measures [Maidens and Arcak, 2015]

Matrix measures can be used to compute discrepancy

Theorem [Sontag 10]: For any $\mathcal{D} \subseteq \mathbb{R}^n$, if the matrix measure of the Jacobian $\mu(J(t, x)) \leq c$ over \mathcal{D} , and all trajectories starting from the line remains in \mathcal{D} then the solutions satisfies:

$$|\xi(x_1,t) - \xi(x_2,t)| \le |x_1 - x_2|e^{ct}$$

- That is, $|x_1 x_2|e^{ct}$ is a discrepancy function
- Here J is the Jacobian of f(x)
- This c can be negative and is usually much smaller than the Lipschitz constant

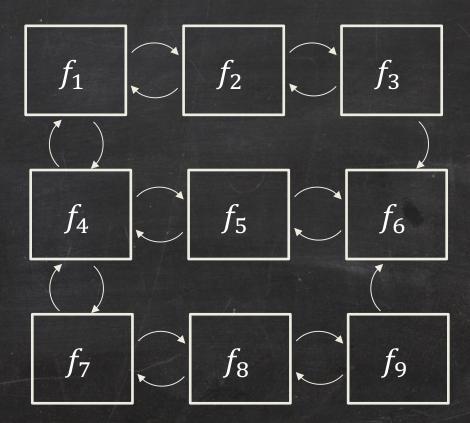
Strategies for computing μ

- Define $y(t) = \xi(x_1, t) \xi(x_2, t)$
- Let interval matrix **A** be such that for all $x \in D$, $J_f(x) \in A$,
- Then $\dot{y}(t) = A(t)y(t)$, for some $A(t) \in A$
- This gives discrepancy $\beta \left(\left| |x_1 x_2| \right|_M, t \right) = \left| |x_1 x_2| \right|_M e^{\frac{\gamma}{2}t}$, where $\gamma^* = \min \gamma$ s.t. $A^T M + M A \leq \gamma M, \forall A \in A \dots$ (*)
- Solving (*)
 - Fix M = I, $\gamma^* = \lambda_{max}(A + A^T) + error$

Simulation $\bigoplus \beta \rightarrow$ Reachtubes

simulation(x_0 , h, ϵ , T) of gives sequence S_0 , ..., S_k : dia(S_i) $\leq \epsilon$ & at any time $t \in [ih, (i + 1)h]$, solution $\xi(x_0, t) \in S_i$.

 $\langle S_0, \dots, S_k, \epsilon_1 \rangle \leftarrow valSim(x_0, T, f)$ For each $i \in [k], \ \epsilon_2 \leftarrow \sup_{t \in T_i, x, x' \in B_{\delta}(x_0)} \beta(x_1, x_2, t)$ $R_i \leftarrow B_{\epsilon_2}(S_i)$


Example 1: $\dot{v} = \frac{1}{2}(v^2 + w^2); \dot{w} = -v$

- $J_f(v,w) = \begin{bmatrix} v & w \\ -1 & 0 \end{bmatrix}$
- $\gamma^* = 1.0178$ upper-bound on eigen values of the symmetric part of $J_f(v, w)$ over $D = [-2, -1] \times [2,3]$
- $||\xi(x_1,t) \xi(x_2,t)|| \le ||x_1 x_2||e^{1.0178t}$ while $x \in D$
- Uniform in all directions

Example 2: $\dot{x} = \begin{bmatrix} 0 & 3 \\ -1 & 0 \end{bmatrix} x$; Eigenvalues $\pm \sqrt{3} i$ Slides by Sayan Mitra (mitras@illinois.edu)

Hybrid models

Hybrid Reachtubes

Track & propagate may and must fragments of reachtube

 $tagRegion(R, P) = \begin{cases} must & R \subseteq P \\ may & R \cap P \neq \emptyset \\ not & R \cap P = \emptyset \end{cases}$

 $invariantPrefix(\psi, S) =$ $\langle R_0, tag_0, \dots, R_m, tag_m \rangle$, such that either $tag_i = must$ if all the $R'_i s$ before it are must $tag_i = may$ if all the $R'_i s$ before it are at least may and at least one of them is not must

Guarantees for bounded invariance verification using discreapancy

Theorem. (Soundness). If Algorithm returns safe or unsafe, then A is safe or unsafe.

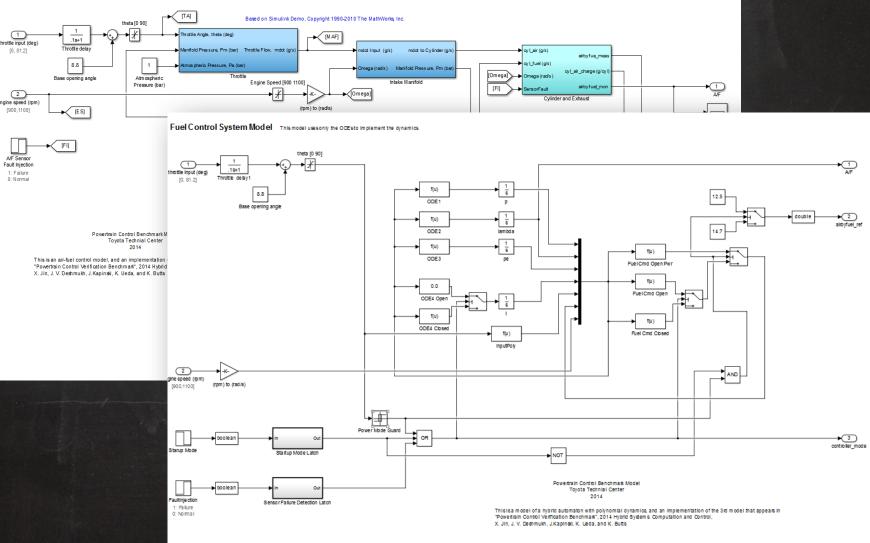
Definition Given HA $A = \langle V, Loc, A, D, T \rangle$, an ϵ -perturbation of A is a new HA A' that is identical except, $\Theta' = B_{\epsilon}(\Theta), \forall \ell \in Loc, Inv' = B_{\epsilon}(Inv)$ (b) a $\in A, Guard_a = B_{\epsilon}(Guard_a)$.

A is **robustly safe** iff $\exists \epsilon > 0$, such that A' is safe for U_{ϵ} upto time bound T, and transition bound N. Robustly unsafe iff $\exists \epsilon < 0$ such that A' is safe for U_{ϵ} .

Theorem. (Relative Completeness) Algorithm always terminates whenever the A is either robustly safe or robustly unsafe.

Compare execute check engine

static-dynamic analysis of nonlinear hybrid models


Powertrain control verification benchmark

Simulink model from [Jin et al. HSCC 2014] Highly nonlinear polynomial differential equations; discrete mode switches

C2E2 **first to verify properties**, e.g., that the **air-fuel ratio** remains within a given range for a set of driver

[CAV 15] Duggirala, Fan, Mitra, Viswanathan: Meeting a Powertrain VerificationChallenge.Slides by Sayan Mitra (mitras@illinois.edu)

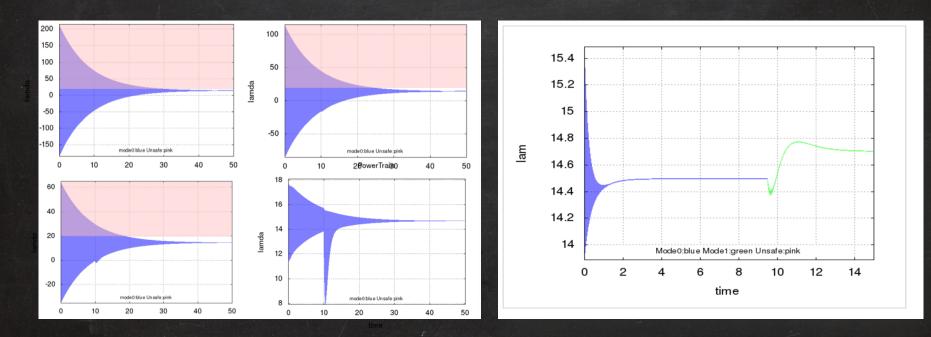
Benchmark Simulink models

Polynomial hybrid automaton

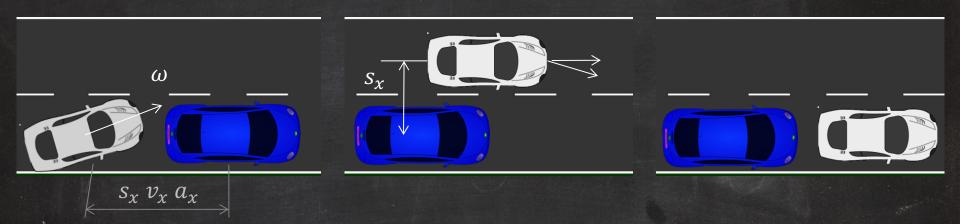
Variable	Description	startup $\dot{x} = f_s(x)$
$ heta_{in}$	Throttle angle	
p	Intake manifold pressure	$timer = T_s$
λ	Air/Fuel ratio	normal
p _e	Intake manifold pressure estimate	sensorFail $\dot{x} = f_n(x)$ $\theta_{in} \ge 70^{\circ}$
i	Integrator state, control variable	$\theta_{in} \leq 50^o$
		sensor_fail $\dot{x} = f_{sf}(x)$ power $\dot{x} - f_{sf}(x)$

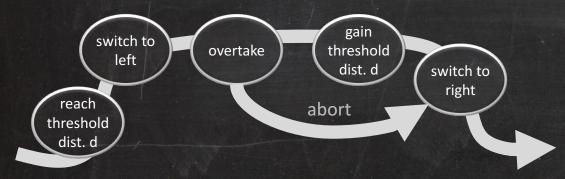
 $\dot{\theta} = 10(\theta_{\rm in} - \theta)$

 $\dot{p} = c_1 (2\theta (c_{20}p^2 + c_{21}p + c_{22}) - c_{12} (c_2 + c_3 \omega p + c_4 \omega p^2 + c_5 \omega p^2))$


 $\dot{\lambda} = c_{26}(c_{15} + c_{16}c_{25}F_c + c_{17}c_{25}^2F_c^2 + c_{18}\dot{m_c} + c_{19}\dot{m_c}c_{25}F_c - \lambda)$

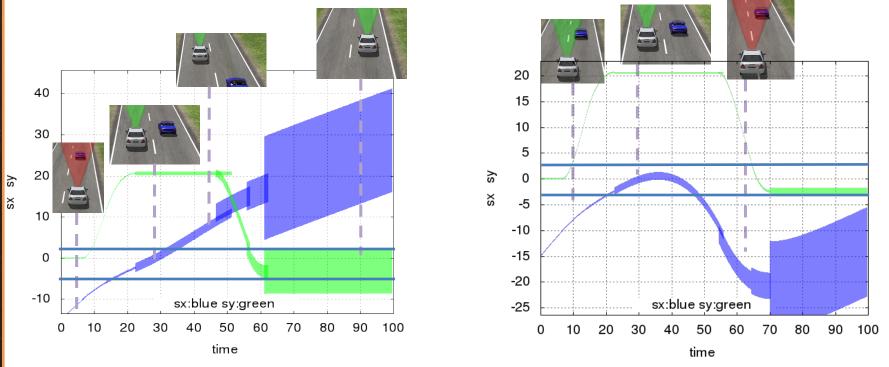
 $\dot{p_{e}} = c_{1} \left(2c_{23}\theta(c_{20}p^{2} + c_{21}p + c_{22}) - (c_{2} + c_{3}\omega p + c_{4}\omega p^{2} + c_{5}\omega p^{2}) \right)$


 $i = c_{14}(c_{24}\lambda - c_{11})$ Slides by Sayan Mitra (mitras@illinois.edu)

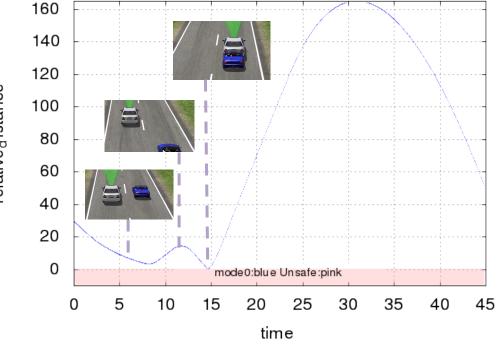

Refinements in action: air-fuel ratio range

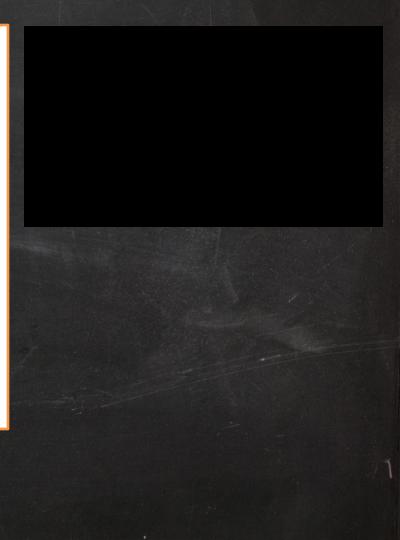
Requirement: Air-Fuel ratio λ contained in interval $[0.9\lambda_{ref}, 1.02\lambda_{ref}]$ for different initial conditions & throttle inputs

An auto-pass controller

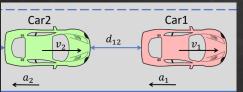

Given a controller and a safe separation requirement, we would like to check that the system is safe with respect to

- a) range of initial relative positions
- b) range of possible speeds
- c) range road friction conditions
- d) possible behaviors of "other" car
- e) range of design parameters

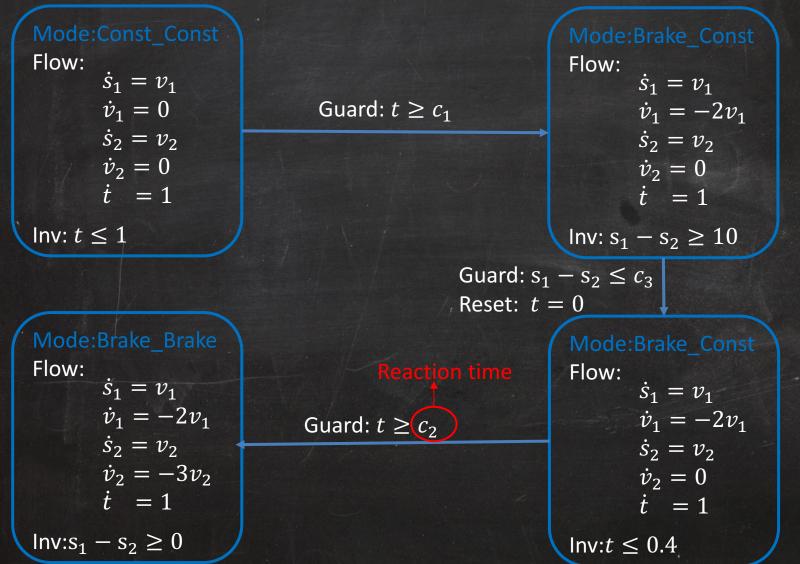

C2E2: Tool for nonlinear hybrid system verification

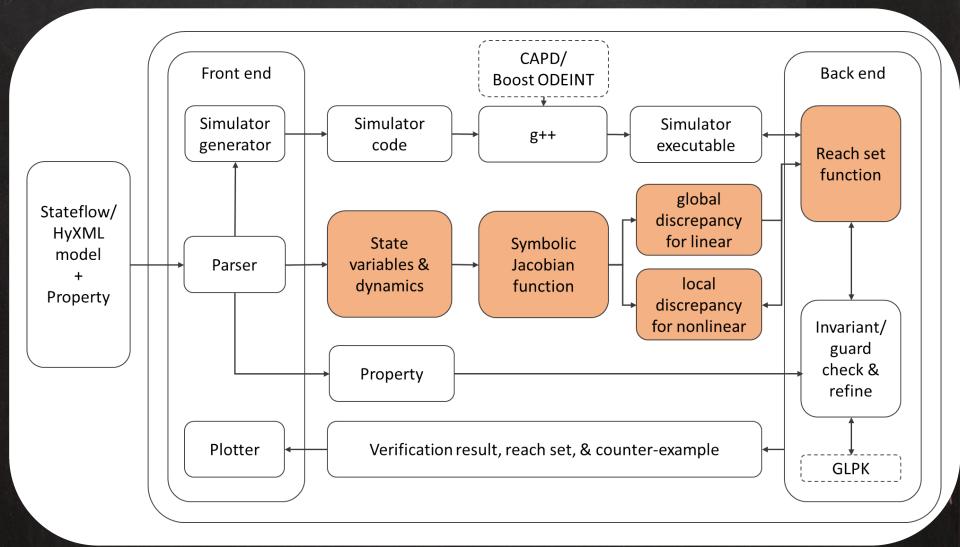

	C2E2: TotalMotion40s								
File Help									
Model 💥									
			Parameters — Time-step:		0.1	No salas			
TotalMotion40s Eq(ax_dot, -0.5*ax - 0.5*vx + 1.4) Eq(omega_dot, -0.15*omega - 0.01*sy + 3.2) Eq(vy_dot, -0.45*omega - 0.025*sy - 0.05*vy + 8.0 Eq(sy_dot, 0.1*vy) ✓ Invariants sy<12 ▶ EndTurn1 (2) ▶ EndTurn2 (3) ✓ Flows Eq(sx_dot, vx - 2.5) Eq(ax_dot, -0.5*ax - 0.5*vx + 1.4) Eq(omega_dot, -0.15*omega - 0.01*sy - 2.8) Eq(vy_dot, -0.45*omega - 0.025*sy - 0.05*vy - 7.0 Eq(sy_dot, 0.1*vy) ✓ Invariants sy>3.5 ▶ SpeedUp (5)	Property nam Model SxSyBack S Safety Initial set: SlowDown: sy =3.3&&ax==0 Unsafe set:	50 40 30 30 30 10	J Time-step: Time horizon:	C2E2: TotalMotio	0.1 %		is ed ed		
Continue (6)									
 ▼ Transitions ▶ SlowDown -> StartTurn1 ▼ StartTurn1 -> EndTurn1 Source: StartTurn1 (1) Destination: EndTurn1 (2) Guards: sy>=12 Actions 		0 -10 0	20 40	sx:blue sy) 60 time	80 100	120 140			
Actions ▶ StartTurn2 -> EndTurn2 ▼ SpeedUp -> StartTurn2 Source: SpeedUp (5) Destination: StartTurn2 (4)						Add	Edit	Сору	Remove
						Status: Ready			

An auto-pass controller


Debugging systems with highfidelity models

relative_d istance

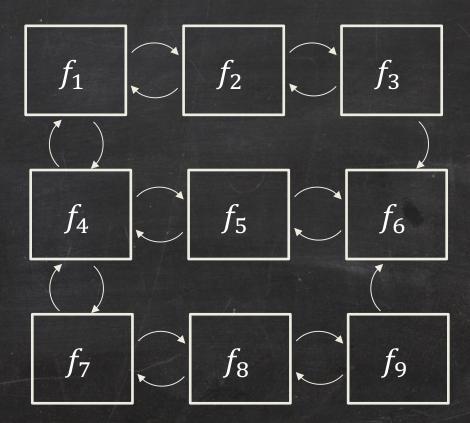

Initial Set


Homework problem

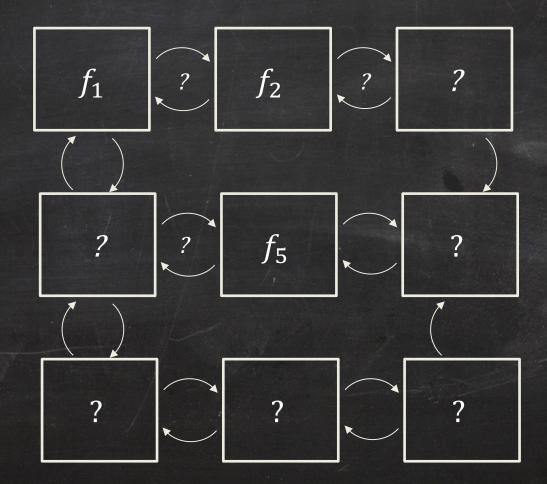
Time Bound: 10s

Unsafe Set

C2E2 Architecture


More features

- Log file to debug
- Plotted pictures are saved in the work-dir folder
- Command line version

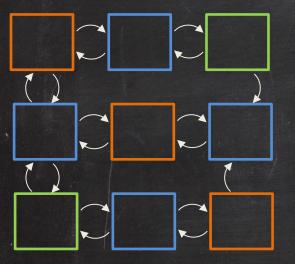

What we don't know

- Sample efficiency of the algorithms - Towards that [Girard Pappas 2006] - [Fan et al. EmSoft 2016] [Liberzon Mitra 2016] Unbounded initial set and time horizon How to verify open models? $-\dot{x}(t) = f(x(t), u(t)), \ x_0 \in \Theta \ u \in \mathcal{U}$ - Ongoing work with $\mathcal{U} = \{u_1, \dots, u_k\}$
- More general models with uncertainty

Hybrid models

Models closer to reality

"All models are wrong, some are useful"



Gain serenity to accept models as they are

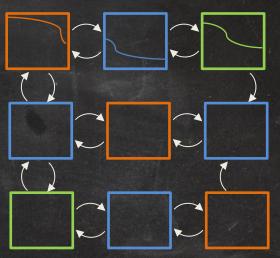
https://github.com/qibolun/DryVR

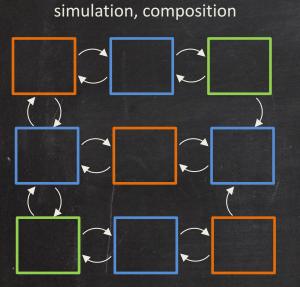
A new view of knowledge in hybrid models

Complete information of switching structure

Transitions are timetriggered, possibly nondeterministic: oneclock timed automaton

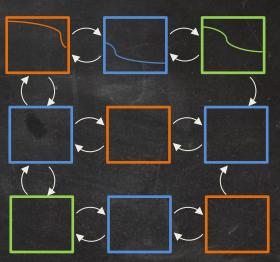
Executable access to mode dynamics



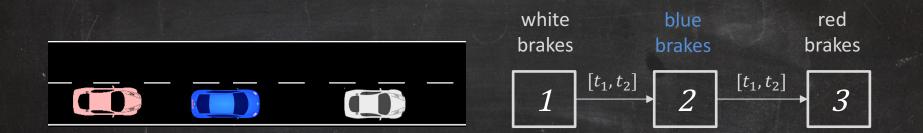

╋

DryVR's Executable hybrid model

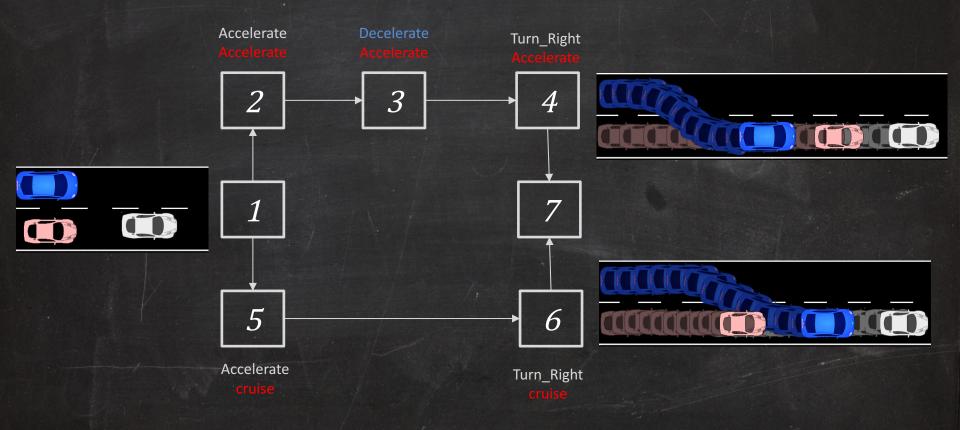
A new view of knowledge in hybrid models


Formal reasoning

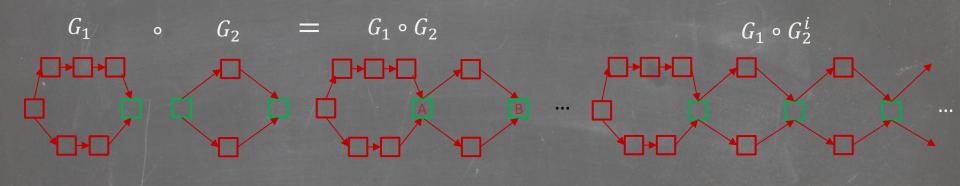
Statistical reasoning sensitivity analysis



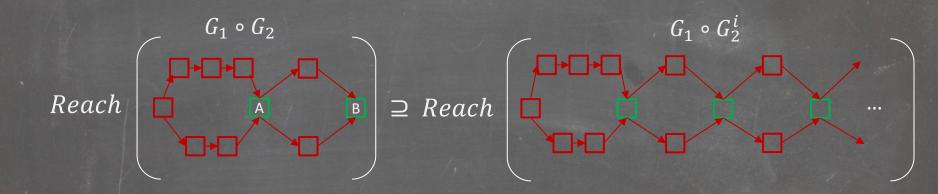
╋


DryVR's formal probabilistic guarantees

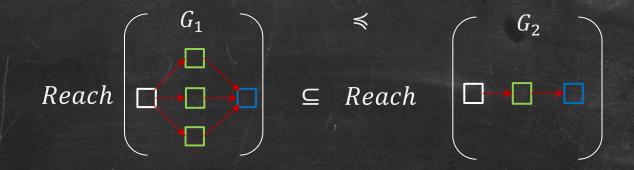
DryVR model for Automatic Emergency Breaking



DryVR model for auto-pass


Composition for unbounded time analysis

If $Reach|B \subseteq Reach|A$ then


Composition for unbounded time analysis

If $Reach|B \subseteq Reach|A$ then

Reasoning about behavior containment

Trace containment $G_1 \leq G_2$ Trajectory containment $\mathcal{TL}_1 \leq \mathcal{TL}_2$ If $\Theta_1 \subseteq \Theta_2, G_1 \leq G_2, \mathcal{TL}_1 \leq \mathcal{TL}_2$, then

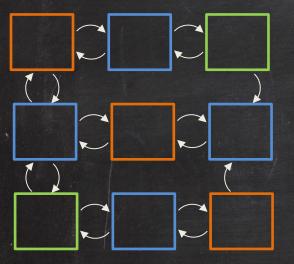
Learning discrepancy from black-box

Assume a form of the discrepancy Global exponential discrepancy $\beta(x_1, x_2, t) = |x_1 - x_2| K e^{\gamma t}$ Others piece-wise exponential, polynomial For any pair of trajectories τ_1 and τ_2 in mode $\forall t \in [0, T], |\tau_1(t) - \tau_2(t)|$ $\leq |\tau_1(0) - \tau_2(0)| K e^{\gamma t}$ $\forall t, \ln \frac{|\tau_1(t) - \tau_2(t)|}{|\tau_1(0) - \tau_2(0)|} \le \gamma t + \ln K$

Familiar problem of learning linear separators

Learning linear separators

For a subset $\Gamma \subseteq \mathbb{R} \times \mathbb{R}$, a linear separator is a pair $(a, b) \in \mathbb{R}^2$ such that $\forall (x, y) \in \Gamma, x \leq ay + b$

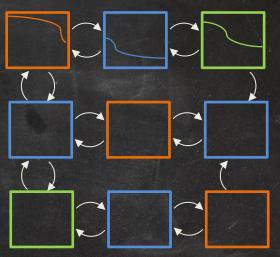

Algorithm:

1. Draw k pairs $(x_1, y_1), ..., (x_k, y_k)$ from Γ according to \mathcal{D} . 2. Find $(a, b) \in \mathbb{R}^2$ s.t. $x_i \leq ay_i + b$ for all $i \in \{1, ..., k\}$. **Proposition [Valiant 84]:** Let $\epsilon, \delta \in \mathbb{R}^+$. If $k \geq \frac{1}{\epsilon} \ln \frac{1}{\delta}$ then with probability $1 - \delta$, the above algorithm finds (a, b)such that $err_{\mathcal{D}}(a, b) = \mathcal{D}(\{(x, y) \in \Gamma \mid x > ay + b\}) < \epsilon$.

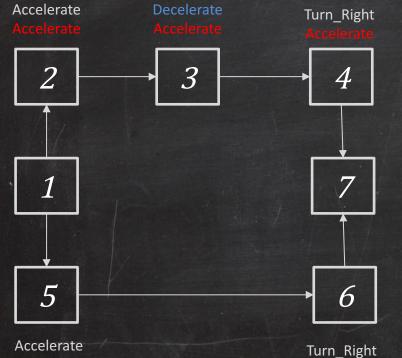
Experience: 96% accuracy for 10 trajectories, >99.9% for 20

DryVR

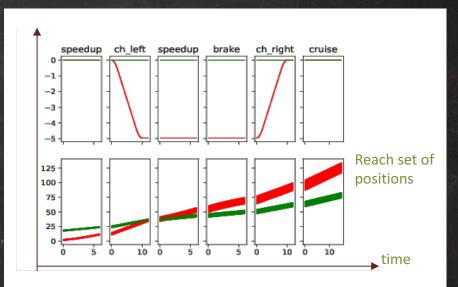
Complete information of switching structure


Executable access to mode dynamics

╋


DryVR's Executable hybrid model

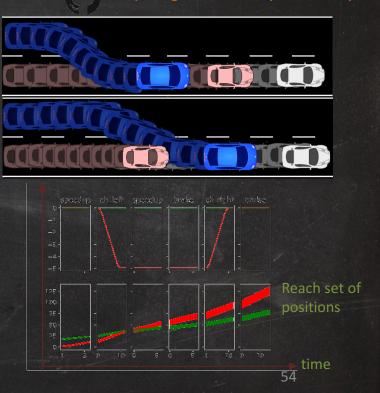
Model file specifies vertices, edges, labels


Simulate function takes as input mode, initial state, and time horizon

Reachability analysis

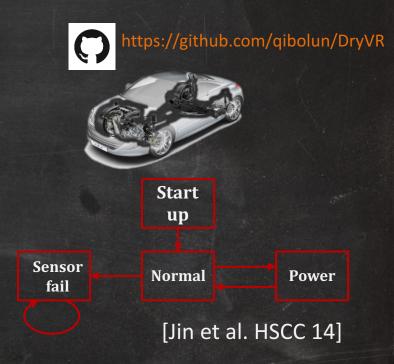
cruise

ırn_Right cruise



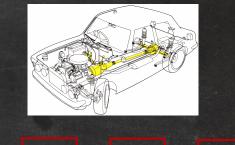
Automotive maneuvers

Model	Time horizo n	Unsafe set	# Refinement	Safe	Run time
Auto-passing	50	Collision	4	~	208s
	50	Collision	5	×	152s
Lane-merge	50	Collision	0	~	55s
	50	Collision	0	×	38s
Lane-merge- highway	50	Collision	4	~	197s
	50	Collision	0	×	21s
Powertrain	80	Air/Fuel out of bound	2	~	217s
Automatic transmission	50	Engine speed too high	2	•	109s

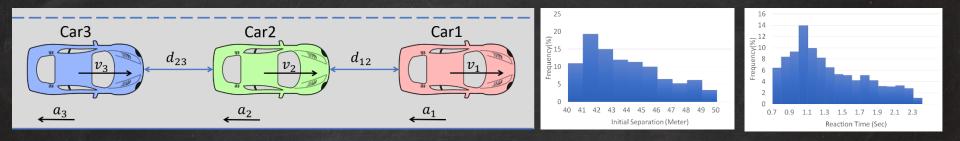

https://github.com/qibolun/DryVR

Case studies: Engine control

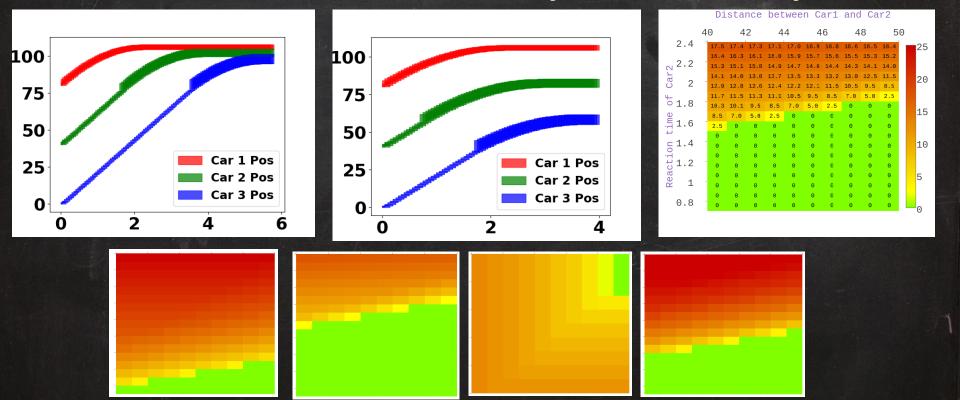
Model	Time horizo n	Unsafe set	# Refinement	Safe	Run time
Auto-passing	50	Collision	4	~	208s
	50	Collision	5	×	152s
Lane-merge	50	Collision	0	~	55s
	50	Collision	0	×	38s
Lane-merge- highway	50	Collision	4	~	197s
	50	Collision	0	×	21s
Powertrain	80	Air/Fuel out of bound	2	~	217s
Automatic transmission	50	Engine speed too high	2	•	109s



Case studies: transmission control


Model	Time horizo n	Unsafe set	# Refinement	Safe	Run time	
Auto-passing	50	Collision	4	•	208s	
	50	Collision	5	×	152s	
Lane-merge	50	Collision	0	~	55s	
	50	Collision	0	×	38s	Gear
Lane-merge-	50	Collision	4	~	197s	1
highway	50	Collision	0	×	21s	
Powertrain	80	Air/Fuel out of bound	2	•	217s	
Automatic transmission	50	Engine speed too high	2	~	109s	

https://github.com/qibolun/DryVR

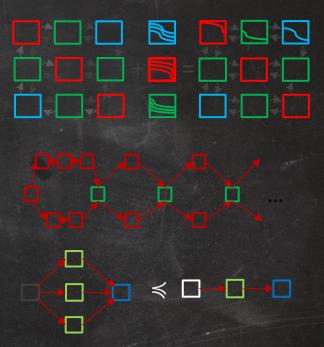


Gear	Gear	🔸 Gear 🗖	- Gear
2	- 3 -	4	5

Automated Risk / ASIL Analysis

Risk = Probability x Severity

Conclusion


A fresh perspective (DryVR's model) on modeling hybrid systems

- white box transition graph + black box simulator
- Case studies ADAS / AV

Enables types of static-dynamic analysis

- Black-box => discrepancy functions with probabilistic guarantees
- Bounded verification [Sound and relatively complete]
- Proof rules for sequential composition for unbounded time verification and behavior containment

Future: More expressive white boxes, synthesis, monitoring,

Conclusions

Simulation data + sensitivity from models => algorithms => sound & complete invariance verification

Try C2E2 and DryVR give feedback, built on! Examples available: Satellites to transistors

Several open questions about handling models with uncertainty and precise characterization of efficiency

This work is supported by grants form the United States National Science Foundation (NSF)