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Abstract. This paper investigates the notions of atoms and atomicity
in C-algebras and obtains a characterisation of atoms in the C-algebra
of transformations. In this connection, various characterisations for the
existence of suprema of subsets of C-algebras are obtained. Further, this
work presents some necessary conditions and some sufficient conditions
for the atomicity of C-algebras and shows that the class of finite atomic
C-algebras is precisely the class of finite adas. This paper also uses the
intrinsic if-then-else action to study the structure of C-algebras and
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1. Introduction

There are several studies in the literature (e.g., [1, 2, 3, 8, 10, 11, 12] and
many more) on extending two-valued Boolean logic to one that is three-
valued, depending on the interpretation of the third truth value, undefined.
The three-valued logic proposed by McCarthy in [15] models the short-circuit
evaluation exhibited by programming languages that evaluates expressions in
sequential order, from left to right. In [7], Guzmán and Squier gave a complete
axiomatisation of McCarthy’s three-valued logic and called the correspond-
ing algebra a C-algebra, or the algebra of conditional logic. While studying
if-then-else algebras, Manes in [14] defined an ada (algebra of disjoint
alternatives) which is a C-algebra equipped with an oracle for the halting
problem.

In [9] Jackson and Stokes studied the algebraic theory of computable
functions, which can be viewed as possibly non-halting programs, equipped
with composition, if-then-else and while-do. In that work they assumed
that the tests form a Boolean algebra. Further, they proposed the problem
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of characterising the algebras of computable functions associated with a C-
algebra of non-halting tests. In order to address the problem, recently, Pan-
icker et al. introduced the notion of C-sets and studied an axiomatisation of
if-then-else over C-algebras in [16, 17]. These works lead to a study of the
structure of C-algebras with a twofold aim. First, the structural properties
of C-algebras would help us in further understanding the problem in ques-
tion. Second, we propose to study the structure of C-algebras using C-sets.
In the literature, Swamy and his associates studied various properties of the
algebraic structure of C-algebras (e.g., see [18, 19, 20, 21]). In contrast, mo-
tivated by the above-mentioned context, this work focuses on the structure
of C-algebras through atomicity and the intrinsic if-then-else action.

The concept of atoms plays a key role in achieving a structural repre-
sentation of Boolean algebras. In this work, using the partial order defined
by Chang in [5] for MV -algebras, we adapt the notion of atoms in Boolean
algebras to C-algebras and study their structure in Section 3. We also ex-
tend some well-known results related to atomicity for Boolean algebras to
C-algebras. Further, using the built-in if-then-else action on C-algebras,
we introduce a notion of annihilators and investigate various structural prop-
erties of C-algebras (see Section 4).

The organisation of this paper is as follows. In Section 2, we recall the
definitions of C-algebras and adas along with various results that are useful
in this work. In Section 3.1, we introduce the notion of atoms and study some
fundamental properties with the goal of studying the structural properties
of C-algebras. In Section 3.2, we provide various characterisations for exis-
tence of suprema of subsets of C-algebras and define the notion of atomic
C-algebras. Focusing on the C-algebra 3X , in Section 3.3, we characterise
the atoms in 3X (cf. Theorem 3.22), and, as a consequence, we establish
that the C-algebra 3X is atomic (cf. Theorem 3.26). Further, in Section 3.4,
we obtain some necessary and some sufficient conditions for the atomicity
of C-algebras. Finally, in Section 3.4.3, we give a characterisation for finite
atomic C-algebras and establish that they are precisely finite adas (cf. The-
orem 3.43). A precise characterisation of arbitrary atomic C-algebras is left
as an open problem.

To further study the structure of C-algebras, in Section 4.1, we introduce
a notion of annihilators in a C-algebra through its inherent if-then-else

action. The annihilator operator provides us a Galois connection, which in
turn, yields closed sets. These closed sets become an internal tool to under-
stand the structure of C-algebras. In Section 4.2, we give a characterisation
for the closed sets in the C-algebra 3X (cf. Theorem 4.8) and show that this
collection forms a complete Boolean algebra (cf. Theorem 4.12). We also ob-
tain a partition of 3X such that the elements of the Boolean algebra 2X is
a single equivalence class (cf. Theorem 4.13). In Section 5, we conclude the
paper with a brief discussion on the problems emerging out of this work.

Throughout the paper several examples are provided for illustration of
results and remarks.
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2. C-algebras and adas

In this section, we provide the necessary definitions and results from the
literature and fix the notation. One may refer to a book on universal algebra
(e.g., [4]) for other notions used in this paper.

McCarthy in [15] studied a three-valued logic in the context of program-
ming languages. This is a non-commutative regular extension of Boolean logic
to three truth values. Here the third truth value U denotes the undefined

state, while T and F represent true and false respectively. In this context,
the evaluation of expressions is carried out sequentially from left to right,
mimicking that of a majority of programming languages. A complete ax-
iomatisation for the class of algebras associated with this logic was given by
Guzmán and Squier in [7] and they called the algebra associated with this
logic a C-algebra.

Definition 2.1. A C-algebra is an algebra 〈M,∨,∧,¬〉 of type (2, 2, 1), which
satisfies the following axioms for all α, β, γ ∈M :

¬¬α = α (2.1)

¬(α ∧ β) = ¬α ∨ ¬β (2.2)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) (2.3)

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) (2.4)

(α ∨ β) ∧ γ = (α ∧ γ) ∨ (¬α ∧ β ∧ γ) (2.5)

α ∨ (α ∧ β) = α (2.6)

(α ∧ β) ∨ (β ∧ α) = (β ∧ α) ∨ (α ∧ β) (2.7)

Remark 2.2. In view of the axioms (2.1) and (2.2), a C-algebra satisfies the
dual of each of its axioms from (2.2) to (2.7). Also, using (2.6) and its dual,
one may notice that ∨ and ∧ are idempotent operations.

Example 2.3. Every Boolean algebra is a C-algebra. In particular, the two-
element Boolean algebra 2 is a C-algebra.

Example 2.4. Let 3 denote the C-algebra with the universe {T, F, U} and the
following operations. This is, in fact, McCarthy’s three-valued logic. Note that
neither ∧ nor ∨ is commutative.

¬
T F
F T
U U

∧ T F U
T T F U
F F F F
U U U U

∨ T F U
T T T T
F T F U
U U U U

Remark 2.5. Since the class of C-algebras is a variety, for any set X, 3X (the
set of all mappings from X to 3) is a C-algebra with the operations defined
pointwise. In fact, in [7] Guzmán and Squier showed that the elements of
the C-algebra 3X can be viewed as pairs of sets. This is a pair (A,B) where
A,B ⊆ X and A ∩ B = ∅. Akin to the well-known correlation between 2X
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and the power set ℘(X) of X, for any element α ∈ 3X , we can associate the
pair of sets (α−1(T ), α−1(F )). Conversely, for any pair of sets (A,B) where
A,B ⊆ X and A ∩ B = ∅, we can associate the function α where α(x) = T
if x ∈ A, α(x) = F if x ∈ B and α(x) = U otherwise. With this correlation,
the operations can be expressed as follows:

¬(A1, A2) = (A2, A1)

(A1, A2) ∧ (B1, B2) = (A1 ∩B1, A2 ∪ (A1 ∩B2))

(A1, A2) ∨ (B1, B2) = ((A1 ∪ (A2 ∩B1), A2 ∩B2)

Further, Guzmán and Squier showed that every C-algebra is a subal-
gebra of 3X for some X as stated below. In this paper, � is used for the
subalgebra relation.

Theorem 2.6 ([7]). 3 and 2 are the only subdirectly irreducible C-algebras.
Hence, every C-algebra is a subalgebra of a product of copies of 3.

Definition 2.7. A C-algebra with T, F, U is a C-algebra with nullary opera-
tions T, F, U , where T is the (unique) left-identity (and right-identity) for ∧,
F is the (unique) left-identity (and right-identity) for ∨ and U is the (unique)
fixed point for ¬. Note that U is also a left-zero for both ∧ and ∨ while F is
a left-zero for ∧.

Notation 2.8. The constants T, F, U of the C-algebra 3X will be denoted
by T,F,U, respectively, and they can be identified by the pairs of sets
(X, ∅), (∅, X), (∅, ∅), respectively.

Unless specified otherwise, in this paper, M always denotes a C-algebra
with T, F, U . When M is considered as a subalgebra of 3X (i.e., M � 3X ,
for some X), the constants T, F, U of M will also be denoted by T,F,U,
respectively. While we denote elements of M by a, b, c, α, β, γ and δ, the
elements of the C-algebra 3X will only be denoted by α, β, γ and δ.

Remark 2.9. The subset {α ∈ M : α ∨ ¬α = T } of M forms a Boolean
algebra under the induced operations ∨,∧,¬, T and F .

Definition 2.10. The algebra M# is the Boolean algebra in Remark 2.9.

We now recall an important expansion of C-algebras, viz., adas (algebras
of disjoint alternatives) introduced by Manes in [14].

Definition 2.11. An ada is a C-algebra M with T, F, U equipped with an
additional unary operation ( )↓, which is an oracle for the halting problem,
subject to the following equations for all α, β ∈M :

U↓ = F = F ↓ (2.8)

T ↓ = T (2.9)

α ∧ β↓ = α ∧ (α ∧ β)↓ (2.10)

α↓ ∨ ¬(α↓) = T (2.11)

α = α↓ ∨ α (2.12)
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Example 2.12. The three-element C-algebra 3 with the unary operation ( )↓

defined as follows forms an ada.

T ↓ = T

U↓ = F = F ↓

We use 3̃ to denote this three-element ada.

The C-algebra 3 is not functionally-complete. However, the ada 3̃ is
functionally-complete. In fact, the variety of adas is generated by the ada 3̃.
In [14], Manes showed that 3̃ is the only subdirectly irreducible ada. For any
set X, 3̃X is an ada with operations defined pointwise. Note that the ada 3̃
is also simple.

Remark 2.13. Since adas are C-algebras with T, F, U , with an additional

operation, every C-algebra M freely generates an ada M̂ . That is, there

exists a C-algebra homomorphism φ : M → M̂ with the universal property
that for each ada A and C-algebra homomorphism f : M → A there exists a

unique ada homomorphism ψ : M̂ → A with ψ(φ(x)) = f(x) for all x ∈ M .
In [14], Manes called such an ada the enveloping ada of M .

Manes also showed the following result.

Proposition 2.14 ([14]). Let A be an ada. Then A↓ = {α↓ : α ∈ A } forms a
Boolean algebra under the induced operations.

Remark 2.15. In fact, A↓ = A#. Also, A↓ = {α ∈ A : α↓ = α }.

Further, as outlined in the following remark, Manes established that the
category of adas and the category of Boolean algebras are equivalent.

Remark 2.16 ([14]). Let Q be a Boolean algebra. By Birkhoff’s representation
of Boolean algebras, suppose Q is a subalgebra of 2X for some set X. Consider
the subalgebra Q? of the ada 3̃X with the universe Q? = { (E,F ) : E∩F = ∅ }
given in terms of pairs of subsets of X. Note that the map Q 7→ (Q?)# is a
Boolean algebra isomorphism. Similarly, for an ada A, the map A 7→ (A#)?

is an ada isomorphism. Hence, the functors based on the assignments above
establish that the category of adas and the category of Boolean algebras are
equivalent.

Remark 2.17. Since the only finite Boolean algebras are 2X for finite X,
using Remark 2.16, we see that the only finite adas are 3̃X for finite X.

3. Atomicity

In order to study the structure of C-algebras through atomicity, in this sec-
tion, we first introduce the notion of atoms in C-algebras and study their
properties. Then we define atomic C-algebras using the concept of suprema
of subsets. In this work we provide characterisations for existence of suprema
of subsets of C-algebras under various contexts. We prove that 3X is atomic
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through a characterisation of its atoms. Subsequently, we present some nec-
essary and some sufficient conditions for the atomicity of C-algebras. Finally,
we establish that finite atomic C-algebras are precisely finite adas.

3.1. Atoms and their properties

We begin by defining a partial order on C-algebras. Define the relation ≤
on a C-algebra M by a ≤ b if a ∨ b = b. Clearly ≤ is reflexive and tran-
sitive. Considering M � 3X , for some set X, one can verify that ≤ is also
antisymmetric so that ≤ is a partial ordering on M .

Remark 3.1. This partial order does not induce a lattice structure on C-
algebras. Note that in the C-algebra 3 we have F ≤ T and F ≤ U while
T � U and U � T . The Hasse diagram for 3 is given below:

T U

F

In fact, F ≤ a for all a ∈M , a C-algebra with T, F, U .

We now define the notion of an atom in C-algebras with T, F, U .

Definition 3.2. Let A ⊆M with F ∈ A. An element a ∈ A\{F} is said to be
an atom of A if for all b ∈ A if F ≤ b ≤ a and b 6= a then b = F . We denote
the set of atoms of A by A (A).

Note that A (3) = {T,U} and A (32) = {(T, F ), (F, T ), (F,U), (U,F )}.
If A = 32 \ {(T, F ), (F, T )} then A (A) = {(T, T ), (F,U), (U,F )}. It is clear
that for all finite M , we have A (M) 6= ∅.

Proposition 3.3. If a, b ∈M such that a ≤ b and b ∈M# then a ∈M#.

Proof. Since the identity a∨¬a = a∨T holds in 3, it holds in all C-algebras.
We have a ∨ b = b since a ≤ b. Further, b ∈ M# gives b ∨ ¬b = T . Thus,
a ∨ ¬a = a ∨ T = a ∨ (b ∨ ¬b) = (a ∨ b) ∨ ¬b (by Remark 2.2) = b ∨ ¬b = T
which completes the proof. �

We have the following corollary, which can also be proved independently.

Corollary 3.4. If a ∈M such that a ≤ T then a ∈M#.

Proposition 3.5. The following hold for all α, γ, δ ∈M :

(i) α ∧ F ≤ α.
(ii) α ∧ F ≤ U .

(iii) α ∧ F = U ⇔ α = U .
(iv) α ∧ F = F ⇔ α ∈M#.
(v) α ∧ F = α⇔ α ∧ β = α for all β ∈M .

(vi) α ≤ γ ⇒ α ∧ γ = α.
(vii) α ≤ α ∨ β for all β ∈M .

(viii) α ≤ δ and γ ≤ δ ⇒ α ∨ γ ≤ δ.
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Proof. The items (i) and (ii) are straightforward.
(iii) Clearly U ∧ F = U . Suppose that α ∧ F = U . Since M � 3X for

some set X we have α(x) ∧ F = U for all x ∈ X. If α(xo) ∈ {T, F} for some
xo ∈ X then α(xo) ∧ F = F , a contradiction. Hence, α(x) = U for all x ∈ X
so that α = U in M .

(iv) Clearly if α ∈M# then α∧F = F . Note that the identities α∧F =
α ∧ ¬α and ¬α ∨ α = α ∨ ¬α hold in all C-algebras since they hold in 3.
Thus, α ∧ ¬α = F . Using (2.2) we have ¬α ∨ α = T so that α ∨ ¬α = T .
Consequently, α ∈M#.

(v) It is clear that α ∧ β = α for all β ∈M ⇒ α ∧ F = α. Suppose that
α ∧ F = α. Then for β ∈ M we have α ∧ β = (α ∧ F ) ∧ β = α ∧ (F ∧ β) =
α ∧ F = α.

(vi) Since α ≤ γ we have α ∨ γ = γ. Thus, α ∧ γ = α ∧ (α ∨ γ) = α (by
Remark 2.2).

(vii) Using Remark 2.2, α∨(α∨β) = (α∨α)∨β = α∨β. Thus, α ≤ α∨β.
(viii) Consider (α∨γ)∨δ = α∨ (γ∨δ) = α∨δ = δ. Thus, α∨γ ≤ δ. �

Remark 3.6. Note that the converse of Proposition 3.5(vi) is not true in
general. For instance U ∧ F = U , however U � F .

For A ⊆M , we write Ac for the complement of A in M , i.e., Ac = M \A.
Further, (M#)c will be simply written as M c

#.

Proposition 3.7. A (M) ∩M# = A (M#). Moreover,

A (M) ∩M c
# ⊆ { a ∈M : a ∧ b = a for all b ∈M }.

Proof. Let a ∈ A (M) ∩M#. Suppose there exists b ∈ M# such that F �
b � a. But, since b ∈M , we get a contradiction to a ∈ A (M). Conversely, if
a ∈ A (M#), then clearly a ∈M#. If there exists b ∈M such that F � b � a
then using Proposition 3.3 we have b ∈ M#. This contradicts a ∈ A (M#).
Hence, A (M) ∩M# = A (M#).

Let a ∈ A (M)∩M c
#. In order to show that a is a left-zero for ∧, using

Proposition 3.5(v) it suffices to show that a∧F = a. Suppose a∧F 6= a. Using
Proposition 3.5(i) we have a ∧ F � a and so since a ∈ A (M) it must follow
that a ∧ F = F . Then by Proposition 3.5(iv), a ∈M# which contradicts our
assumption that a ∈M c

#. Hence, a∧F = a so that a is a left-zero for ∧. �

Notation 3.8. For A ⊆ X, ϕ
T,A

denotes the element represented by the pair

of sets (A,Ac) in 3X . Also, the element represented by the pair of sets (∅, Ac)
is denoted by ϕ

U,A
. If A = {x} then we simply use the notation ϕ

T,x
and

ϕ
U,x

.

The following result gives a necessary condition for atoms of M .

Theorem 3.9. If a ∈ A (M) then a ∧ b ≤ b or a ∧ b = a for all b ∈M .

Proof. Let a ∈ A (M) and b ∈M . If a ∈ A (M)∩M c
# then using Proposition

3.7 we have a is a left-zero for ∧ from which the result follows. On the other
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hand, if a ∈ A (M) ∩ M# then consider M � 3X for some set X. Thus,
a = ϕ

T,A
for some ∅ 6= A ⊆ X so that

(a ∧ b)(x) =

{
b(x), if x ∈ A;

F, otherwise.

Hence, ((a ∧ b) ∨ b)(x) = b(x) for all x ∈ X so that a ∧ b ≤ b. �

Remark 3.10. The condition given in Theorem 3.9 is not sufficient for A (M).
For instance consider (U,U, F, F ) in the C-algebra 34. This is a left-zero for
∧ but is not an atom since (F, F, F, F ) ≤ (U,F, F, F ) ≤ (U,U, F, F ).

Remark 3.11.

(i) For a ∈ A (M) and b ∈ M either a ≤ b or a ∧ b ≤ b need not hold
in general. Let M = {(T, T, T, T ), (F, F, F, F ), (U,U, U, U), (T, T, F, F ),
(F, F, T, T ), (U,U, F, F ), (U,U, T, T ), (F, F, U, U), (T, T, U, U)} � 34. For
a = (F, F, U, U) ∈ A (M) and b = (U,U, T, T ) ∈ M , we have a =
(F, F, U, U) � (U,U, T, T ) = b and a ∧ b = (F, F, U, U) � (U,U, T, T ) =
b. Note that in this case a ∧ b = a.

(ii) For a ∈ A (M) and b ∈ M it need not be true that a ∧ b ∈ A (M).
Consider M = {(T, T ), (F, F ), (U,U), (F,U), (T,U)} � 32. Take a =
(T, T ) ∈ A (M) and b = (T,U) ∈M . Then a ∧ b = (T,U) /∈ A (M).

(iii) For a, b ∈ M it need not be true that b ≤ a ∨ b. For instance in 3 we
have T � U ∨ T = U .

(iv) For a, b ∈ M we need not have a ∧ b ≤ a nor a ∧ b ≤ b in general.
Consider M = 33, a = (T,U, F ) and b = (U, T, F ). Then a ∧ b =
(U,U, F ) � (T,U, F ) = a and a ∧ b = (U,U, F ) � (U, T, F ) = b.

(v) For a ∈ A (M) it need not be true that a ∧ U ∈ A (M). Consider
M = {(T, T ), (F, F ), (U,U), (F,U), (T,U)} � 32. Note that A (M) =
{(T, T ), (F,U)}. For a = (T, T ), a ∧U = (U,U) /∈ A (M).

We now provide a characterisation for left-zeros of M in terms of certain

elements of the enveloping ada M̂ (cf. Remark 2.13).

Proposition 3.12. The following are equivalent for all β ∈M :

(i) β is a left-zero for ∧.
(ii) β ∧ F = β.

(iii) β↓ = F in M̂ .

Proof. Let M̂ � 3̃X for some set X.
((i) ⇔ (ii)) This is shown in Proposition 3.5(v).
((ii)⇒ (iii)) Let β∧F = β. Then (β∧F)(x) = β(x) gives β(x) ∈ {F,U}

for all x ∈ X. Thus, (β↓)(x) = (β(x))↓ = F for all x ∈ X. Hence, β↓ = F in

M̂ .
((iii)) ⇒ (ii)) Let β↓ = F in M̂ . Then (β↓)(x) = (β(x))↓ = F for all

x ∈ X. It follows that β(x) ∈ {F,U} for all x ∈ X and so (β ∧ F)(x) = β(x)
for all x ∈ X. Hence, β ∧ F = β in M . �
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We now establish a relation between atoms of M# and those of M c
# for

an ada M .

Theorem 3.13. Let M be an ada. There exists a bijection between the sets
A (M) ∩M c

# and A (M) ∩M#.

Proof. Let M � 3̃X for some set X. Consider G : A (M)∩M c
# → A (M)∩M#

given by
G(α) = ¬((¬α)↓).

Let α ∈ A (M) ∩ M c
#. It is straightforward to deduce that G(α) ∈ M#.

Since α is a left-zero for ∧ (cf. Proposition 3.7) we have α = ϕ
U,A

for some

∅ 6= A ⊆ X. It follows that G(α) = ¬((¬α)↓) = ϕ
T,A

. If G(α) is not an
atom of M# then there exists γ = ϕ

T,B
where ∅ 6= B ( A and F � γ � δ.

Thus, β = γ ∧ U = ϕ
U,B

and F � β � α which contradicts the fact that
α ∈ A (M) ∩M c

#. It follows that G is well-defined.

Suppose that ¬((¬α)↓) = ¬((¬β)↓) for some α, β ∈ A (M)∩M c
#. Then

(¬α)↓ = (¬β)↓ ∈ M#. Then (¬α)↓ = (¬β)↓ = ϕ
T,A

for some A ⊆ X. It
follows that ¬α and ¬β can be represented by the pairs of sets (A,Bα) and
(A,Bβ) where Bα, Bβ ⊆ Ac. Thus, α and β can be represented by the pairs
of sets (Bα, A) and (Bβ , A) where Bα, Bβ ⊆ Ac. Since α, β ∈ A (M)∩M c

# we
have α = ϕ

U,C
and β = ϕ

U,D
for some C,D ⊆ X. Hence, in the representation

for α and β that is (Bα, A) and (Bβ , A) respectively we must have Bα = ∅ =
Bβ . It follows that α = β and so G is injective.

Let β ∈ A (M) ∩M#. It follows that β = ϕ
T,A

for some ∅ 6= A ⊆ X.
Consider α = β ∧U = ϕ

U,A
∈M c

#. Along similar lines as in the proof for the

well-definedness of G, we show that α ∈ A (M) ∩M c
#. Further, G(α) = β so

that G is surjective. �

Corollary 3.14. Let M be a finite ada. Then |A (M)| is even.

3.2. Supremum and atomicity

In this section, we study properties of suprema of subsets, using which we
introduce the notion of atomicity in C-algebras. We first make an important
observation.

Remark 3.15. A representation of an element as a join of atoms need not be
unique in a C-algebra. For example in the C-algebra A = 32\{(T, F ), (F, T )},
we have (T, T ) = (T, T ) ∨ (F,U) and also (T, T ) = (T, T ) ∨ (U,F ).

For A = { ai : i ∈ I } ⊆M , if the supremum of A (in short supA) exists
in M , then, in view of Remark 3.15, we denote the supA by⊕

i∈I
ai

rather than writing it as a join of elements of A. We characterise the supre-
mum under various contexts in this work.

Note that if φ : M → 3X is a C-algebra embedding, then φ is order-
preserving. Hence, if M � 3X for some X, then the order of M will be
preserved in 3X .
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Proposition 3.16. Let M � 3X for some set X and let { ai : i ∈ I } ⊆ M

such that
⊕
i∈I

ai exists. Given x ∈ X, we have the following:

(L1) If ai(x) = T for some i ∈ I then aj(x) ∈ {T, F} for all j ∈ I.
(L2) If ai(x) = U for some i ∈ I then aj(x) ∈ {U,F} for all j ∈ I.

Proof. Suppose that ai(x) = T and aj(x) = U for some i, j ∈ I. Let a =⊕
i∈I

ai. It follows that ai ≤ a and aj ≤ a and therefore T = ai(x) ∨ a(x) =

a(x) = aj(x) ∨ a(x) = U ; a contradiction. Hence, the result follows. �

Proposition 3.17. Let {αi : i ∈ I } ⊆ 3X . Then
⊕
i∈I

αi exists in 3X if and

only if (L1) and (L2) hold. In this case, for x ∈ X,

⊕
i∈I

αi(x) =


T, if there exists i ∈ I such that αi(x) = T ;

U, if there exists i ∈ I such that αi(x) = U ;

F, otherwise.

Proof. Let A = {αi : i ∈ I }. If
⊕
i∈I

αi exists then (L1) and (L2) hold due

to Proposition 3.16. Conversely, if (L1) and (L2) hold, define the following
element in 3X :

α(x) =


T, if there exists i ∈ I such that αi(x) = T ;

U, if there exists i ∈ I such that αi(x) = U ;

F, otherwise.

Note that the element α is well-defined due to (L1) and (L2). Let i ∈ I
be given. We ascertain that αi ≤ α, that is αi ∨ α = α, or in other words
αi(x) ∨ α(x) = α(x) for all x ∈ X. Let x ∈ X be given. If αi(x) = T then
by the definition of α, we have α(x) = T so that αi(x) ∨ α(x) = T = α(x).
The case when αi(x) = U follows along similar lines. If αi(x) = F it is clear
that αi(x)∨ α(x) = α(x). Thus, α is an upper bound of A. Further, let β be
an upper bound of A. Therefore, αi ≤ β for all i ∈ I. Let x ∈ X be given.
Consider the following cases:

(i) α(x) = T : From the definition of α it follows that αi(x) = T for some
i ∈ I. Since αi(x) ≤ β(x) we have αi(x) ∨ β(x) = T = β(x). Hence,
α(x) ∨ β(x) = T = β(x) so that α(x) ≤ β(x).

(ii) α(x) = U : The case follows along similar lines as above.
(iii) α(x) = F : Clearly α(x) ∨ β(x) = β(x) so that α(x) ≤ β(x).

Thus, α(x) ≤ β(x) for all x ∈ X from which the result follows. �

Remark 3.18. It can be observed that (L1) holds if and only if (L2) holds.
Suppose that (L1) holds but (L2) does not. Then there exist i, j ∈ I such
that ai(x) = U but aj(x) = T . This clearly contradicts condition (L1). The
converse follows similarly.
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Remark 3.19. In connection to the converse of Proposition 3.16, the con-
ditions (L1) and (L2) do not ensure the existence of suprema in M for its
subsets, while suprema may exist in 3X . To illustrate this, consider M ⊆ 3X

defined using the pair of sets representation by

(A,B) ∈M if and only if Ac is finite or Bc is finite or (A ∪B) is finite.

It is routine to verify that M is a subalgebra (with T, F, U) of 3X . Let X = N,
the set of natural numbers. Consider the set {αn : n ∈ N } of elements of M
given by the following: If n is odd, αn = ({n}, {n}c); otherwise, when n is
even, αn = (∅, {n}c). In fact, if n is odd, for any x ∈ N,

αn(x) =

{
T, if x = n;

F, otherwise.

On the other hand, if n is even, for any x ∈ N,

αn(x) =

{
U, if x = n;

F, otherwise.

Hence, the set {αn : n ∈ N } satisfies (L1) and (L2). So, by Proposition 3.17,⊕
n∈N

αn exists in 3X and, for x ∈ N,

⊕
n∈N

αn(x) =

{
T, if x is odd;

U, otherwise.

Clearly,
⊕
n∈N

αn /∈ M and hence {αn : n ∈ N } has no supremum in M .

However, every finite subset of {αn : n ∈ N } has supremum in M . In fact,

for any finite subset I of N,
⊕
n∈I

αn = (O,N \ I) ∈ M , where O is the set of

odd numbers in I.

Proposition 3.20. Let { ai : 1 ≤ i ≤ n } be a finite set of elements of M . Then⊕
1≤i≤n

ai exists if and only if for every rearrangement of (ai)
n
i=1 the join of

these elements remain unchanged, i.e., for every bijection

σ : {1, 2, . . . , n} → {1, 2, . . . , n}
we have

aσ(1) ∨ aσ(2) ∨ · · · ∨ aσ(n) = a1 ∨ a2 ∨ · · · ∨ an.
In this case,

n⊕
i=1

ai = a1 ∨ a2 ∨ · · · ∨ an.

Proof. Let A = { ai : 1 ≤ i ≤ n } and suppose that supA exists, say a =
supA. It suffices to show that given i, j ≤ n we have ai ∨ aj = aj ∨ ai.
Consider M � 3X for some set X. Let x ∈ X be given. If ai(x) = T then from
Proposition 3.16 we have aj(x) ∈ {T, F} so that ai(x)∨ aj(x) = T = aj(x)∨
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ai(x). The proof for the case when ai(x) = U follows along similar lines. If
ai(x) = F then clearly ai(x)∨aj(x) = aj(x) = aj(x)∨ai(x). Therefore, since
ai(x) ∨ aj(x) = aj(x) ∨ ai(x) for all x ∈ X, we have ai ∨ aj = aj ∨ ai.

Conversely, suppose ai ∨ aj = aj ∨ ai for all i, j ≤ n. We claim that
a1 ≤ a1 ∨ · · · ∨ an. By Remark 2.2, we have a1 ∨ (a1 ∨ · · · ∨ an) = (a1 ∨ a1)∨
(a2 ∨ · · · ∨ an) = a1 ∨ a2 ∨ · · · ∨ an. Therefore, a1 ≤ a1 ∨ a2 ∨ · · · ∨ an. Along
similar lines, using the fact that elements of A commute, we can show that
ai ≤ a1∨a2∨ · · ·∨an for all i ≤ n. Thus, a1∨a2∨ · · ·∨an is an upper bound
of A. Let b be an upper bound of A. Then ai ≤ b for all 1 ≤ i ≤ n. Thus, by
Remark 2.2, we have (a1∨a2∨· · ·∨an)∨b = (a1∨a2∨· · ·∨an−1)∨(an∨b) =
(a1 ∨ a2 ∨ · · · ∨ an−1) ∨ b and so on. Thus, (a1 ∨ a2 ∨ · · · ∨ an) ∨ b = b so
that a1 ∨ a2 ∨ · · · ∨ an is the least upper bound of A and supA =

⊕n
i=1 ai =

a1 ∨ a2 ∨ · · · ∨ an. �

Definition 3.21. Let M be a C-algebra with T, F, U . We say that M is atomic
if for every a ∈ M \ {F} there exists a set of atoms { ai : i ∈ I } ⊆ A (M)

such that a =
⊕
i∈I

ai.

Note that the C-algebra 32 is atomic. Whereas, the C-algebra A =
32 \ {(T, F ), (F, T )} is not atomic. For instance (T,U) is not supremum of
any set of atoms in A.

3.3. Atomicity of 3X

We consider the C-algebra 3X and first establish a characterisation for its
atoms. Then we prove that 3X is atomic for any X.

Theorem 3.22. Let X be any set. Then A (3X) = {α ∈ 3X : there exists a
unique xo ∈ X such that α(xo) ∈ {T,U} }.

Proof. Let α ∈ A = {α ∈ 3X : there exists a unique xo ∈ X such that
α(xo) ∈ {T,U} }. Let β ∈ 3X such that F ≤ β � α. Since α ∈ A we have
α(x) = F for all x 6= xo. Thus, since F ≤ β(x) ≤ α(x), we must have
β(x) = F for all x 6= xo. Further, since β � α we must have β(xo) � α(xo)
and so β(xo) = F (cf. Remark 3.1). Consequently, β = F. Hence, α ∈ A (M).

Conversely, suppose that α ∈ A (M) but α /∈ A. Then either α(x) = F
for all x ∈ X or there exist xo, yo ∈ X, where xo 6= yo, and α(xo), α(yo) ∈
{T,U}. In the former case, clearly α = F /∈ A (M), which is a contradiction.
In the latter case, consider β ∈M given by the following:

β(x) =

{
α(x), if x 6= xo;

F, if x = xo.

It is easy to see that F ≤ β(x) ≤ α(x) for all x ∈ X and so F ≤ β ≤ α. Since
β(xo) = F � α(xo) and β(yo) = α(yo) ∈ {T,U} we have F � β � α. Again,
this contradicts α ∈ A (M). Hence, the result follows. �

This gives us the following result on the cardinality of A (3X).
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Corollary 3.23. For X 6= ∅ we have |A (3X)| = |X tX|, where t denotes the
disjoint union.

Since every finite ada is isomorphic to 3̃X , for some set X (cf. Remark
2.17) we note that Corollary 3.23 is in fact a stronger version of Corollary
3.14.

Notation 3.24. Let α ∈ A (3X). Using Theorem 3.22, denote by xα the unique
element of X satisfying α(xα) ∈ {T,U}.

Let {αi : i ∈ I } be a set of atoms in 3X . If xαi
6= xαj

for all i 6= j, then
{αi : i ∈ I } satisfies conditions (L1) and (L2), and hence, using Proposition

3.17 we have sup{αi : i ∈ I } =
⊕
i∈I

αi exists. Conversely, if
⊕
i∈I

αi exists,

then using Proposition 3.17 and Theorem 3.22, we have xαi
6= xαj

for all
i 6= j. Thus, we have the following characterisation for the supremum of a
set of atoms in 3X .

Lemma 3.25. Let {αi : i ∈ I } be a set of atoms in 3X . Then
⊕
i∈I

αi exists

if and only if xαi 6= xαj for all i 6= j. Further, using Theorem 3.22 and the
expression for the supremum given in Proposition 3.17, we have⊕

i∈I
αi(x) =

{
αp(xαp

), if x = xαp
;

F, otherwise.

Theorem 3.26. The C-algebra 3X is atomic for any set X.

Proof. Let β ∈ 3X such that β 6= F. Using the pairs of sets representation
of 3X identify β with the pair of sets (A,B). Since β 6= F it follows that
Bc 6= ∅. Consider the family of elements defined by the following for y ∈ Bc:

αy(x) =

{
β(y), if x = y;

F, otherwise.

Using Theorem 3.22 since αy(y) = β(y) ∈ {T,U} we have αy ∈ A (3X) for

each y ∈ Bc. Using Lemma 3.25, it is clear that
⊕
y∈Bc

αy = β. �

3.4. Necessary and/or sufficient conditions

First we provide some sufficient and some necessary conditions for atomic-
ity of an arbitrary C-algebra M using the atoms of 3X for which M is a
subalgebra (cf. Section 3.4.1) and using M# (cf. Section 3.4.2). Finally we
characterise finite atomic C-algebras in Section 3.4.3.

3.4.1. Using the atoms of 3X . We consider M � 3X and study the atomicity
of M from information about the atoms of 3X . In this connection, we provide
a sufficient condition for atomicity of M when X is finite (cf. Corollary 3.31).
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Remark 3.27. Let M � 3X for some X. Note that M ∩A (3X) ⊆ A (M). In
general the inclusion could be proper. For example, consider

M = {(T, T ), (F, F ), (U,U), (F,U), (U,F ), (T,U), (U, T )}
where M � 32. Then A (M) = {(F,U), (U,F ), (T, T )} ) M ∩ A (32) since
(T, T ) /∈ A (32). Thus, not all atoms of M are atoms of 3X .

We focus our study on C-algebras M � 3X in which every atom of M
is an atom of 3X , i.e., A (M) ⊆ A (3X). Equivalently, A (M) = M ∩A (3X).

Remark 3.28. The proper subalgebras of 32 are as follows:

M0 = {(T, T ), (F, F ), (U,U)},
M1 = {(T, T ), (F, F ), (U,U), (F,U), (T,U)},
M2 = {(T, T ), (F, F ), (U,U), (U,F ), (U, T )},
M3 = {(T, T ), (F, F ), (U,U), (F,U), (T,U), (U,F ), (U, T )}.

The set of atoms of each subalgebra is as follows:

A (M0) = {(T, T ), (U,U)},
A (M1) = {(T, T ), (F,U)},
A (M2) = {(T, T ), (U,F )},
A (M3) = {(T, T ), (F,U), (U,F )}.

Since (T, T ) ∈ A (Mi) for 0 ≤ i ≤ 3 and (T, T ) /∈ A (32), no proper subalge-
bra of 32 satisfies A (Mi) ⊆ A (32).

In fact, for finite X, if A (M) ⊆ A (3X) then we prove that M = 3X in
Theorem 3.30. To that aim we first have the following result.

Lemma 3.29. For finite X, let M � 3X . If A (M) = A (3X) then M = 3X .

Proof. Let β ∈ 3X . If β = F, then clearly β ∈M . Suppose that β 6= F. Then
for the pair of sets representation (A,B) of β, we have Bc 6= ∅. As in the

proof of Theorem 3.26, we have β =
⊕
y∈Bc

αy, where, for y ∈ Bc, αy ∈ A (3X)

is given by

αy(x) =

{
β(y), if x = y;

F, otherwise.

Since A (M) = A (3X), we have αy ∈ A (M) ⊆M . Further, since X is finite,

so is Bc. Consequently, there are only finitely many such αy in
⊕
y∈Bc

αy. Hence,⊕
y∈Bc

αy ∈M so that β ∈M . Thus, M = 3X . �

Theorem 3.30. For finite X, let M � 3X such that A (M) ⊆ A (3X). Then
M = 3X .
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Proof. We show that A (M) = A (3X) by generating all atoms from one
another in an algorithmic method. Hence, by Lemma 3.29 we have M = 3X .
It suffices to show that ϕ

T,x
∈ M for each x ∈ X, because if ϕ

T,x
∈ M then

ϕ
T,x
∧U = ϕ

U,x
∈M .

Since X is finite we have M is finite. So, for T ∈ M there exists α ∈
A (M) such that α ≤ T. Then, by Proposition 3.3, α ∈ M# � 2X . Since
A (M) ⊆ A (3X) we have α ∈ A (3X) so that α = ϕ

T,x1
for some x1 ∈ X.

Define β1 = ϕ
T,x1

and so ¬β1 = ¬ϕ
T,x1

= ϕ
T,X\{x1} . If ¬β1 is an atom

then X \ {x1} is a singleton and so X = {x1, x2} and so the algebra is 32.
The only subalgebra in which every atom is an atom of 32 is 32 itself (cf.
Remark 3.28) and we are done.

If ¬β1 is not an atom then there exists ϕ
T,x2
∈ A (M) such that ϕ

T,x2
≤

¬β1 ≤ T. Define β2 = ϕ
T,x2

and so ¬β2 = ¬ϕ
T,x2

= ϕ
T,X\{x2} . If ¬β2 is

an atom then we are through. Else there exists ϕ
T,x3

∈ A (M) such that
ϕ

T,x3
≤ ¬β2 ≤ T. Define β3 = ϕ

T,x3
and so ¬β3 = ¬ϕ

T,x3
= ϕ

T,X\{x3} and
so on.

This process can take at most |X| steps. Further, as mentioned above
if ϕ

T,x
∈ M then ϕ

T,x
∧ U = ϕ

U,x
∈ M so that A (M) = A (3X). Hence,

M = 3X . �

Now, in view of Theorem 3.26, we have the following corollary of The-
orem 3.30.

Corollary 3.31. For finite X, let M � 3X such that A (M) ⊆ A (3X). Then
M is atomic.

Remark 3.32. The condition in Corollary 3.31 is not necessary for M to be
atomic.

(i) For instance, A (M0) 6⊆ A (32) for the C-algebra M0 as given in Remark
3.28. However, M0 is clearly atomic.

(ii) For a nontrivial example, consider

M =


(T, T, T, T ), (F, F, F, F ), (U,U, U, U),

(T, T, F, F ), (F, F, T, T ), (U,U, F, F ),

(U,U, T, T ), (F, F, U, U), (T, T, U, U)

 � 34.

Note that A (M) = {(T, T, F, F ), (F, F, T, T ), (U,U, F, F ), (F, F, U, U)}
and so A (M) 6⊆ A (34). However, M is atomic.

Remark 3.33. Lemma 3.29 and Theorem 3.30 do not hold in general for
arbitrary X. To illustrate this, consider the C-algebra M � 3X given in
Remark 3.19, for X = N. While M is a proper subalgebra of 3X , we show
that A (M) = A (3X). First note that, by Theorem 3.22, α = (A,B) ∈
A (3X) if and only if |Bc| = 1. Accordingly, we have A (3X) ⊆ A (M). For
reverse inclusion, let α = (A,B) ∈ A (M). By considering the following three
possibilities, we prove that |Bc| = 1.
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(i) If A∪B is finite, then choose xo ∈ (A∪B)c and set β = (A,B ∪ {xo}).
Note that β ∈M and F � β � α. But since α is an atom of M , this is
not possible. Hence, A ∪B cannot be finite.

(ii) If Ac is finite, then choose xo ∈ A and set β = (A \ {xo}, B ∪ {xo}).
Clearly, β ∈M and F � β � α. Hence, as earlier, Ac cannot be finite.

(iii) Now the possibility is that Bc is finite. Since α is an atom, Bc 6= ∅.
Suppose that |Bc| ≥ 2. Choose xo ∈ Bc and set D = B ∪ {xo}. Then
Dc is finite and X 6= D 6= B. Note that α(xo) ∈ {T,U}. If α(xo) = U ,
then let C = A; otherwise, let C = A \ {xo}. Now β = (C,D) ∈M and
F � β � α. This contradicts the fact that α is an atom of M .

Hence, |Bc| = 1 so that A (M) = A (3X).

3.4.2. Using M#. We now investigate the relation between the atomicity of
M# and that of M . If M is a finite algebra, it is straightforward that M#

is always atomic even when M is not atomic. However, the question remains
in the case where M is infinite. In this section, we give results to produce
various atomless and non-atomic C-algebras depending on M#. Further, we
give a necessary condition for atomicity in Theorem 3.37.

Theorem 3.34. If M is atomic then M# is atomic.

Proof. Suppose M is atomic. Let a ∈ M# ⊆ M then there exist {ai}i∈I ⊆
A (M) such that a =

⊕
i∈I ai. Since a =

⊕
i∈I ai = sup{ ai : i ∈ I } we have

ai ≤ a. Consequently, by Proposition 3.3, we have ai ∈ M#. Further, using
Proposition 3.7, we have A (M)∩M# = A (M#) so that ai ∈ A (M#). Thus,
M# is atomic. Hence, the result follows. �

Theorem 3.35. Let M be an ada. If M# is atomless then M is atomless.

Proof. Suppose M# is atomless but A (M) 6= ∅. Let α ∈ A (M). It is clear
that α /∈M#; otherwise, using Proposition 3.7, we have α ∈ A (M) ∩M# =
A (M#), which contradicts M# is atomless. Thus, α ∈M c

# and so α↓ 6= α (cf.

Remark 2.15). We consider the following two cases and derive contradictions.
Accordingly, the result follows.

Case I : α↓ 6= F : From the ada identity α↓∨α = α, we have F � α↓ � α,
which contradicts α ∈ A (M).

Case II : α↓ = F : Since α ∈ A (M) ∩M c
#, α is a left-zero for ∧ (cf.

Proposition 3.7). Consider M � 3̃X for some set X. It follows that α = ϕ
U,A

for some A ⊆ X. This is because if α(x) = T for some x ∈ X then α↓(x) = T
and so α↓ 6= F, a contradiction. Also A 6= ∅ since α 6= F. Then

¬α(x) = ¬ϕ
U,A

(x) =

{
U, if x ∈ A;

T, otherwise.

Then (¬α)↓ ∈M since M is an ada so that

(¬α)↓(x) =

{
F, if x ∈ A;

T, otherwise.
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In fact (¬α)↓ ∈M#. Consider ¬((¬α)↓) ∈M#. Note that ¬((¬α)↓) is of the
form ϕ

T,A
. Since M# is atomless it follows that there exists ϕ

T,B
∈M#, where

∅ 6= B ( A, and F � ϕ
T,B

� ϕ
T,A

. Consider ϕ
U,B

= ϕ
T,B
∧U ∈ M . Since

∅ 6= B ( A, we have F � ϕ
U,B

� ϕ
U,A

= α, which contradicts α ∈ A (M). �

Remark 3.36. Theorem 3.35 allows us to construct an atomless ada from an
atomless Boolean algebra. For an atomless Boolean algebra B, the ada B?

will also be atomless. For further reading on atomless Boolean algebras refer
to [6].

Theorem 3.37. Let M be a finite C-algebra with T, F, U such that |M | > 3
and T ∈ A (M). Then M is not atomic.

Proof. Since T ∈ A (M) it is clear that M# = {T, F}. Since |M | > 3 there
exists γ ∈ M \ {T, F, U} and since M is finite, there exists α ∈ A (M) such
that α ≤ γ. Clearly α ∈ A (M) ∩M c

#.

Consider M � 3X for some set X. Then α = ϕ
U,A

for some ∅ 6= A ⊆ X.
Suppose that A = X. Then α = U ∈ A (M) and it follows that M =
{T,F,U}. This is because if there is some β ∈M c

# \ {U} then using Propo-

sition 3.5(ii) we have F � β ∧ F � U, which is not possible as U ∈ A (M).
However, since M is non-trivial, we arrived at a contradiction. Thus, A 6= X.

Suppose thatM is atomic. Consider ¬α ∈M c
#. There exist finitely many

ai ∈ A (M) such that ¬α =
⊕
ai. Clearly T /∈ {ai} since T ∨ a = T 6= ¬α.

Since M# = {T,F} we have A (M) \ {T} ⊆ M c
#. Thus, ai = ϕ

U,Ai
for

∅ 6= Ai ⊆ X. However, ¬α = ¬ϕ
U,A

where ∅ 6= A ( X and so we have

¬α(x) =

{
U, if x ∈ A;

T, otherwise.

On the other hand, ¬α =
⊕
ϕ

U,Ai
gives

¬α(x) =

{
U, if x ∈ Ai for some i;

F, otherwise.

This is a contradiction, since A ( X there exists xo ∈ X such that ¬α(xo) =
T . Hence, M is not atomic. �

Remark 3.38. Although M c
# is a C-algebra under the induced operations ¬,

∧ and ∨ of M , it does not contain the constants T and F , and is therefore
not a subalgebra of M (with T, F, U). It is therefore natural to consider
M c

# = M c
# ∪ {T, F}, which is clearly a C-algebra with T, F, U .

Corollary 3.39. Let M be a finite C-algebra with T, F, U such that |M | > 3.
Then M c

# = M c
# ∪ {T, F} is never atomic.

Proof. Since (M c
#)# = {T, F} we have T ∈ A (M c

#). The result follows from
Theorem 3.37. �
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Remark 3.40. The converse of Theorem 3.37 need not be true. That is, if M
be a C-algebra with T, F, U such that M is not atomic then T need not be
in A (M). Consider

M =


(T, T, T ), (F, F, F ), (U,U, U), (U,F, F ), (U, T, T ),

(F, F, T ), (T, T, F ), (F, F, U), (T, T, U), (U,U, F ),

(U, T, F ), (U,F, T ), (U,F, U), (U, T, U), (U,U, T )

 � 33.

Then, since A (M) = {(U,F, F ), (F, F, T ), (T, T, F ), (F, F, U)}, (T, T, T ) /∈
A (M). However, M is not atomic since (U, T, F ) can only be written as join
of atoms (U,F, F ) and (T, T, F ) but the supremum of these atoms does not
exists.

3.4.3. Characterisation of finite atomic C-algebras. Here we prove that the
class of finite atomic C-algebras (with T, F, U) is precisely that of finite adas.
For this, we give a set-theoretic requirement for the existence of suprema of
subsets.

Lemma 3.41. Let M � 3X for some set X and let {αi}i∈I ⊆ M where
I = {1, 2, . . . , n}. Suppose αi is represented by the pairs of sets (Ai, Bi) for

all i ∈ I. Then
⊕
i∈I

αi exists if and only if Ai ∩ (Aj ∪Bj)c = ∅ for all i, j ∈ I.

Proof. If Ai ∩ (Aj ∪Bj)c = ∅ for all i, j ∈ I then

α1(x) ∨ α2(x) ∨ · · · ∨ αn(x) =


T, if x ∈ A1;

U, if x ∈ (A1 ∪B1)c;

α2(x) ∨ · · · ∨ αn(x), otherwise.

=



T, if x ∈ A1;

U, if x ∈ (A1 ∪B1)c;

T, if x ∈ A2;

U, if x ∈ (A2 ∪B2)c;

α3(x) ∨ · · · ∨ αn(x), otherwise.

Note that the well-definedness of this expression follows from the fact that
Ai ∩ (Aj ∪ Bj)c = ∅ so that we do not have x ∈ A1 ∩ (A2 ∪ B2)c or x ∈
A2 ∩ (A1 ∪B1)c. This process yields the following:

α1(x) ∨ α2(x) ∨ · · · ∨ αn(x) =


T, if x ∈

⋃
Ai;

U, if x ∈
⋃

(Ai ∪Bi)c;
F, otherwise

which is well-defined and establishes that the join is independent of the order

of the elements. Consequently, using Proposition 3.20,
⊕
i∈I

αi exists and can
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be expressed as follows:

⊕
i∈I

αi(x) =


T, if x ∈ Ai for some i ∈ I;

U, if x ∈ (Ai ∪Bi)c for some i ∈ I;

F, otherwise.

Conversely, suppose
⊕
i∈I

αi exists. If x ∈ Ap ∩ (Aq ∪ Bq)c for some

x ∈ X and some p, q ∈ I where p 6= q, then αp(x) = T and αq(x) = U ; which
contradicts Proposition 3.16. Hence, the result follows. �

Using the criterion of Lemma 3.41, the following result is immediate.

Corollary 3.42. Let (∅ 6=) I be finite and {αi}i∈I ⊆M such that
⊕
i∈I

αi exist.

Then for any (∅ 6=) J ⊆ I,
⊕
j∈J

αj exists.

We now characterise finite atomic C-algebras in the following result.

Theorem 3.43. Let M be a finite C-algebra with T, F, U . M is atomic if and
only if M is an ada.

Proof. (⇐) In view of Remark 2.17 we have M is isomorphic to 3̃X for some
finite set X. Since its reduct 3X is atomic (cf. Theorem 3.26), M is an atomic
C-algebra.

(⇒) Let M be atomic but not an ada. Then M ( M̂ where M̂ is

the enveloping ada of M . Consider M̂ � 3̃X , for some finite set X. Thus,

M � M̂ � 3X as C-algebras.

Since M ( M̂ there exists γ ∈ M such that γ↓ /∈ M . Therefore, there
exists x1 ∈ X such that γ(x1) = T since otherwise γ↓ = F ∈ M . Further,
there exists x2 ∈ X such that γ(x2) = U since otherwise γ↓ = γ ∈ M , a
contradiction. Hence, γ can be identified with the pair of sets (A,B) where
A 6= ∅ 6= (A ∪B)c.

Since M is atomic there exist {αi}i∈I ⊆ A (M) ∩M# and {βj}j∈J ⊆
A (M) ∩M c

#, where I and J are finite, such that

γ = (
⊕

αi)⊕ (
⊕

βj).

It is clear that each αi can be identified with the pair of sets (Ai, A
c
i ) and

that each βj can be identified with the pair of sets (∅, Bcj ) where Ai, Bj ⊆ X.
In other words αi = ϕ

T,Ai
and βj = ϕ

U,Bj
.

Since we have ascertained that A 6= ∅ 6= (A ∪ B)c we have I 6= ∅ 6= J .
Since

⊕
is defined, using Lemma 3.41 we have Ai ∩ (∅ ∪Bcj )c = Ai ∩Bj = ∅

for all i ∈ I and j ∈ J . Further,
⋃
Ai = A.

Since I is finite we have
⊕
αi ∈ M# ⊆ M . Also

⊕
αi = γ↓ since γ↓ is

represented by the pair of sets (A,Ac) and
⊕
αi is represented by the pair

of sets (
⋃
Ai, (

⋃
Ai)

c). Thus γ↓ ∈ M , which is a contradiction. The result
follows. �
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4. Further study using if-then-else

In [16], Panicker et al. introduced the notion of a C-set to study an ax-
iomatisation of if-then-else that included models of possibly non-halting
programs and tests that were drawn from a C-algebra. Standard examples
of C-sets include

(
To(X⊥),3X

)
, where To(X⊥) is the set of all functions on

a pointed set X⊥ which fix ⊥, with the action

[ , ] : 3X × To(X⊥)× To(X⊥)→ To(X⊥)

given by

α[f, g](x) =


f(x), if α(x) = T ;

g(x), if α(x) = F ;

⊥, otherwise.

(4.1)

Given a C-algebra M with T, F, U , by treating M as a pointed set with
base point U , the pair (M,M) is a C-set under the action

J , K : M ×M ×M →M

given by
αJβ, γK = (α ∧ β) ∨ (¬α ∧ γ).

This inherent if-then-else operation enables us to study further structural
properties of C-algebras. We directly refer to [16] for the results on C-sets
which are used in this work.

4.1. Annihilators and closed sets

In this section we define annihilators using the if-then-else action on a
C-algebra. Then we investigate the internal structure of C-algebras through
closed sets which are obtained via a Galois connection of the annihilator
operator.

For each α ∈M , by treating αJ , K as a binary operation, we define the
notion of annihilators in Definition 4.1. Hereafter we use α, β, γ, δ to denote
elements of M treated as binary operations while a, b, c are used otherwise.
As earlier, the elements of the C-algebra 3X will also be denoted by α, β, γ, δ.

Definition 4.1. For a ∈M ,

Ann(a) = {α ∈M : αJa, aK = U }.
We extend Ann in a natural manner to subsets of M through the operator
Ann : ℘(M)→ ℘(M) given by

Ann(S) =
⋂
a∈S

Ann(a).

In other words Ann(S) = {α ∈M : for all a ∈ S, αJa, aK = U }.

Proposition 4.2. The following hold in any C-algebra M with T, F, U :

(i) Ann(U) = M .
(ii) For any a ∈M , U ∈ Ann(a).
(iii) For any a ∈M#, Ann(a) = {U}.
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(iv) Ann(M) = {U}.
(v) b ∈ Ann(a)⇔ a ∈ Ann(b).
(vi) B ⊆ Ann(A)⇔ A ⊆ Ann(B).

(vii) A ⊆ B ⇒ Ann(B) ⊆ Ann(A).

Proof. (i) By [16, Proposition 2.8], we have α[⊥,⊥] = ⊥ in an arbitrary C-set
(S⊥,M). Hence, for the C-set (M,M) we get αJU,UK = U for each α ∈ M
so that Ann(U) = M .

(ii) Note that UJa, aK = (U ∧ a)∨ (¬U ∧ a) = U so that U ∈ Ann(a) for
all a ∈M .

(iii) Using Proposition 4.2(ii) it is clear that {U} ⊆ Ann(a). For the
reverse inclusion since M � 3X for some set X, for a ∈ M# we have a(x) ∈
{T, F} for all x ∈ X. Suppose that α(xo) ∈ {T, F} for some xo ∈ X so that
(α(xo) ∧ a(xo)) ∨ (¬α(xo) ∧ a(xo)) ∈ {T, F}. However,

Ann(a) = {α ∈M : (α(x) ∧ a(x)) ∨ (¬α(x) ∧ a(x)) = U for all x ∈ X },
a contradiction. Consequently, α(x) = U for all x ∈ X hence α = U.

(iv) Since Ann(M) =
⋂
a∈M

Ann(a), we have Ann(M) = {U} (cf. Propo-

sition 4.2(iii)).
(v) Consider M � 3X for some set X and b ∈ Ann(a) so that (b(x) ∧

a(x)) ∨ (¬b(x) ∧ a(x)) = U for all x ∈ X. For x ∈ X we have the following
cases for (a(x) ∧ b(x)) ∨ (¬a(x) ∧ b(x)):

b(x) = T . Since (b(x) ∧ a(x)) ∨ (¬b(x) ∧ a(x)) = U we have (T ∧ a(x)) ∨
(F ∧a(x)) = a(x)∨F = a(x) = U . Thus, (a(x)∧b(x))∨(¬a(x)∧b(x)) =
(U ∧ b(x)) ∨ (U ∧ b(x)) = U .

b(x) = F . Along similar lines since (b(x) ∧ a(x)) ∨ (¬b(x) ∧ a(x)) = U we
have (F ∧ a(x)) ∨ (T ∧ a(x)) = F ∨ a(x) = a(x) = U . Hence, (a(x) ∧
b(x)) ∨ (¬a(x) ∧ b(x)) = (U ∧ b(x)) ∨ (U ∧ b(x)) = U .

b(x) = U . Then (a(x)∧b(x))∨(¬a(x)∧b(x)) = (a(x)∧U)∨(¬a(x)∧U) = U
for a(x) ∈ {T, F, U}.

Hence, aJb, bK = U so that a ∈ Ann(b). The converse follows along similar
lines.

(vi) This follows as a direct consequence of Proposition 4.2(v).
(vii) Let A ⊆ B, β ∈ Ann(B) and a ∈ A. Since β ∈ Ann(b) for each

b ∈ B and a ∈ A ⊆ B we have β ∈ Ann(a). Thus, Ann(B) ⊆ Ann(A). �

We now recall the notions of closure operators, closed sets and Galois
connection which are well-known in the literature. For more details one may
refer to [13].

Given a set X, a function C : ℘(X)→ ℘(X) is termed a closure operator
on X if for all A,B ⊆ X it satisfies the following:

A ⊆ C(A) (extensive)

C2(A) = C(A) (idempotent)

A ⊆ B ⇒ C(A) ⊆ C(B) (isotone)
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A subset A ⊆ X is called a closed subset if C(A) = A.

Remark 4.3. The set of all closed sets of X ordered by set inclusion ⊆ is a
partially ordered set (poset). In fact, it forms a complete lattice.

Let A and B be posets and F : A→ B and G : B → A be two antitone
functions. The pair (F,G) is said to be an antitone Galois connection if for
all a ∈ A, b ∈ B,

b ≤ F (a)⇔ a ≤ G(b).

Remark 4.4. Given an antitone Galois connection (F,G) of posets A and
B, the composite functions FG : B → B and GF : A → A form closure
operators. Further, FGF = F and GFG = G.

Now we have the following result which follows from Proposition 4.2(vi)
and Proposition 4.2(vii).

Proposition 4.5. The pair (Ann,Ann) is an antitone Galois connection.

In view of Remark 4.4, we have the following corollary of Proposition
4.5.

Corollary 4.6. The function Ann2 : ℘(M) → ℘(M) is a closure operator.
Further, Ann3 = Ann.

Let I be the collection of closed sets of M under the closure operator
Ann2, i.e., I = { I ⊆ M : Ann2(I) = I }. Through these closed sets, we
now investigate the structure of C-algebras focusing on 3X . First observe the
following general property of closed sets in I.

Proposition 4.7. Let I ∈ I such that I 6= M . Then I ∩M# = ∅.

Proof. Suppose that there exists a ∈ I ∩M# where I ∈ I such that I 6= M .
For any α ∈ Ann(a) we have α = U using Proposition 4.2(iii) since a ∈
M#. Further, since Ann(I) =

⋂
a∈I

Ann(a) we have Ann(I) = {U}. Using

Proposition 4.2(i) we have Ann2(I) = Ann(U) = M . It follows that I =
Ann2(I) = M since I ∈ I, which is a contradiction. Thus, I ∩M# = ∅. �

4.2. Closed sets of 3X

We consider the C-algebra 3X and give a characterisation of the closed sets
in I with respect to operator Ann2. To that aim, in this section we consider
the C-algebra in question to be precisely 3X for an arbitrary set X.

Theorem 4.8. Let I ⊆ 3X . I ∈ I if and only if there exists Y ⊆ X such that

(P1) for all α ∈ I, for all y ∈ Y , α(y) = U ,
(P2) for all f : Y c → 3 there exists α ∈ I such that α � Y c = f .

Proof. (⇐) Let I ⊆ 3X such that there exists Y ⊆ X which satisfies both
the given conditions (P1) and (P2). We show that Ann2(I) = I. Since Ann2

is extensive it suffices to show that Ann2(I) ⊆ I.
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Let β ∈ Ann2(I). For β � Y c there exists α ∈ I such that α � Y c = β �
Y c. Moreover, α(y) = U for all y ∈ Y . We show that β(y) = U for all y ∈ Y
so that β = α from which it follows that β ∈ I.

Suppose β(yo) ∈ {T, F} for some yo ∈ Y . Since β ∈ Ann2(I) we have
(βJγ, γK)(yo) = U for all γ ∈ Ann(I) and so γ(yo) = U for all γ ∈ Ann(I).
Consider δ ∈ 3X given by

δ(x) =

{
T, if x ∈ Y,
U, otherwise.

Since α(y) = U for all y ∈ Y , for all α ∈ I, we infer that δJα, αK = U so that
δ ∈ Ann(I). However, δ(yo) = T 6= U , a contradiction. Hence, β ∈ I and so
I ∈ I.

(⇒) Let I ∈ I. Consider the following.

A = {x ∈ X : α(x) = U for all α ∈ I }
B = {x ∈ X : α(x) ∈ {T, F} for some α ∈ I } = X \A.

We show that Y = A is the required set. It is clear that α(y) = U for all

α ∈ I and for all y ∈ A. Let f : B → 3. Consider its extension f̂ : X → 3
given by the following:

f̂(x) =

{
f(x), if x ∈ B;

U, if x ∈ A.

Thus, f̂ � B = f̂ � Ac = f . Let β ∈ 3X . It is clear that

β ∈ Ann(I)⇔ β(z) = U for all z ∈ B.

Consider β ∈ Ann(I). It follows that (f̂Jβ, βK)(z) = U for all z ∈ B. Also

since f̂(y) = U for all y ∈ A we have (f̂Jβ, βK)(y) = U and so f̂Jβ, βK = U

from which it follows that f̂ ∈ Ann2(I) = I. This completes the proof. �

Theorem 4.8 equips us with a mechanism to identify the collection of
closed sets in I with respect to Ann2.

Definition 4.9. For A ⊆ X define IA ⊆ 3X by

IA = {α ∈ 3X : α(y) = U for all y ∈ A }. (4.2)

Proposition 4.10. I = { IA : A ⊆ X }.

Proof. For A ⊆ X consider IA as defined by (4.2). It follows in a straightfor-
ward manner that IA satisfies (P1) and (P2) of Theorem 4.8 for Y = A so
that IA ∈ I.

Conversely for I ∈ I using Theorem 4.8 we have Y ⊆ X such that (P1)
and (P2) are satisfied. We show that I = IY . Clearly I ⊆ IY due to (P1).
Conversely assume that α ∈ IY that is α(y) = U for all y ∈ A. Using (P2)
of Theorem 4.8 we have β � Y c = α � Y c for some β ∈ I. Property (P1) of
Theorem 4.8 ensures that β(y) = U for all y ∈ Y . It follows that α = β so
that α ∈ I. �
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We prove the following set theoretic relations on closed sets. These are
useful in establishing that I is a Boolean algebra in Theorem 4.12.

Lemma 4.11. For A ⊆ X and IA ∈ I the following hold:

(i) Ann(IA) = IAc .
(ii) IA ∩ IB = IA∪B.

(iii) Ann(Ann(IA) ∩Ann(IB)) = IA∩B.

Proof. (i) Let α ∈ Ann(IA). In view of Definition 4.9 and Proposition 4.10
it suffices to show that α(y) = U for all y ∈ Ac. For each y ∈ Ac consider
βy ∈ 3X given by

βy(x) =

{
T, if x = y;

U, otherwise.

It is straightforward to see that βy ∈ IA for all y ∈ Ac. Thus, αJβy, βyK = U
for all y ∈ Ac and so (αJβy, βyK)(y) = U for all y ∈ Ac. Since βy(y) = T it
follows that α(y) = U for all y ∈ Ac.

For the reverse inclusion consider α ∈ IAc and β ∈ IA. Using Defi-
nition 4.9 and Proposition 4.10 we have α(y) = U for all y ∈ Ac, so that
(αJβ, βK)(y) = U for all y ∈ Ac. Thus, β(y) = U for all y ∈ A so that
(αJβ, βK)(y) = U for all y ∈ A. Thus, α ∈ Ann(IA) and consequently
Ann(IA) = IAc .

(ii) Consider α ∈ IA ∩ IB and y ∈ A ∪ B. It suffices to show that
α(y) = U . If y ∈ A then α(y) = U since α ∈ IA. Along similar lines,
α(y) = U if y ∈ B so that α ∈ IA∪B .

For the reverse inclusion consider α ∈ IA∪B . For y ∈ A ⊆ A ∪ B we
have α(y) = U so that α ∈ IA. Proceeding along similar lines we can show
that α ∈ IB from which the result follows.

(iii) Using Lemma 4.11(i) and Lemma 4.11(ii) we have Ann(Ann(IA)∩
Ann(IB)) = Ann(IAc ∩ IBc) = Ann(IAc∪Bc) = I(Ac∪Bc)c = IA∩B . �

While it is known that I is a complete lattice (cf. Remark 4.3), we
now explicitly show that I is a complete Boolean algebra using its internal
structure.

Theorem 4.12. The set I of closed sets of 3X with respect to Ann2 is a
Boolean algebra with respect to the operations

¬I = Ann(I)

I1 ∧ I2 = I1 ∩ I2
I1 ∨ I2 = Ann(Ann(I1) ∩Ann(I2))

and {U} and 3X as the constants 0 and 1 respectively. Moreover, I ∼= 2X

and is therefore complete.

Proof. We rely on the representation of I as given in Proposition 4.10. In
view of Lemma 4.11 we show that the operations given as follows define a
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Boolean algebra on I:

¬IA = IAc

IA ∧ IB = IA∪B

IA ∨ IB = IA∩B

The verification is straightforward and involves set theoretic arguments.
Let A,B ⊆ X. Using Lemma 4.11 we have IA ∧ IB = IA∪B = IB∪A =

IB ∧ IA and similarly IA ∨ IB = IA∩B = IB∩A = IB ∨ IA. Along similar lines
the axioms of associativity, idempotence, absorption and distributivity can
be verified so that 〈I,∨,∧〉 is a distributive lattice.

Note that IX = {U} while I∅ = 3X . Using Lemma 4.11 we have IA ∧
IX = IA∪X = IX and IA∨I∅ = IA∩∅ = I∅ for all A ⊆ X. Also IA∧Ann(IA) =
IA ∧ IAc = IA∪Ac = IX and IA ∨Ann(IA) = IA ∨ IAc = IA∩Ac = I∅.

Hence, 〈I,∨,∧,¬, IX , I∅〉 is a Boolean algebra. It is straightforward to
verify that the assignment given by IA 7→ Ac from I to 2X is a Boolean
algebra isomorphism. �

In the following result, using closed sets we give a classification of el-
ements of M = 3X which segregates the elements of 2X(= M#) into one
class.

Theorem 4.13. For each A ⊆ X define SA = {α ∈ 3X : Ann(α) = IA }. The
collection {SA : A ⊆ X } forms a partition of 3X in which all the elements
of 2X form a single equivalence class.

Proof. We first show that SA 6= ∅ for any A ⊆ X. To that aim consider
α ∈ 3X given by

α(x) =

{
U, if x ∈ Ac;
T, otherwise.

Using Definition 4.9 and Proposition 4.10 it is straightforward to verify that
Ann(α) = IA. Consequently, SA 6= ∅.

It is evident that α ∈ SA ∩ SB is a violation of the well-definedness of
Ann(α) from which it follows that SA ∩ SB = ∅ for A,B ⊆ X where A 6= B.

Note that for any α ∈ 3X we have Ann(α) ∈ I that is Ann(α) = IA
for some A ⊆ X, since Ann2(Ann(α)) = Ann3(α) = Ann(α) using Corollary
4.6. Thus, Ann(α) = IA for some A ⊆ X so that α ∈ SA. Therefore,⋃

A⊆X

{SA : A ⊆ X } = 3X

and hence the collection {SA : A ⊆ X } forms a partition of 3X .
Further, for α ∈ 2X we have Ann(α) = {U} = IX so that α ∈ SX .

Conversely any α ∈ SX would satisfy Ann(α) = IX = {U}. If α(xo) = U for
some xo ∈ X then it follows that β ∈ 3X given by

β(x) =

{
T, if x = xo;

U, otherwise.
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satisfies βJα, αK = U and so U 6= β ∈ Ann(α) which is a contradiction. Thus,
α(x) ∈ {T, F} for all x ∈ X from which it follows that α ∈ 2X . Hence, the
equivalence class SX = 2X . �

We conclude this section with some remarks on annihilators.

Remark 4.14.

(i) The statement Ann(α) = {U} ⇔ α ∈M# holds in 3X but need not be
true in general.

For example, considerA = {(T, T ), (F, F ), (U,U), (F,U), (T,U)} ≤
32 and (T,U) ∈ A. Then Ann(T,U) = {β ∈ A : βJ(T,U), (T,U)K =
(U,U) }. Hence, for (x, y) ∈ Ann(T,U) we have ((x∧T )∨ (¬x∧T ), (y∧
U) ∨ (¬y ∧ U)) = (U,U) and so (x ∨ ¬x, U) = (U,U). It follows that
x = U and so Ann(T,U) = {(U,U)}. However, (T,U) /∈ A#.

Note that the only closed sets of A are A and {(U,U)}. Further,
in this example, the collection of closed sets is a Boolean algebra.

(ii) For I ⊆M where M � 3X we have AnnM (I) = Ann3X (I) ∩M .
Let α ∈ AnnM (I). Clearly α ∈M and α ∈ Ann3X (I). Conversely

suppose α ∈ Ann3X (I) ∩M . Then it is clear that α ∈ AnnM (I).
(iii) Thus, on applying Ann to the previous statement and making appro-

priate substitutions we have Ann2M (I) = Ann3X (Ann3X (I) ∩M) ∩M .

5. Conclusion

The interdependence between the structure of a Boolean algebra and its
atomicity is well known in the literature. In this paper, we studied the atom-
icity of a non-commutative extension of Boolean algebras, viz., C-algebras.
We also studied the structure of a C-algebra via closed sets defined using
its inherent if-then-else operation. In addition to demonstrating the rela-
tionship between the atomicity of the Boolean subalgebra M# and that of a
C-algebra M , in both the approaches, we proved several structural proper-
ties of arbitrary C-algebras. This work especially focuses on the C-algebra
of transformations, 3X . In fact, we proved that 3X is atomic, for any set X,
and characterised the class of finite atomic C-algebras. In this connection,
we determined various necessary and sufficient conditions for the existence of
suprema of subsets of the C-algebra 3X . Using an alternative approach, we
classified the elements of 3X by means of closed sets. However, these problems
for arbitrary C-algebras are open for further investigation.
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