
Validation of Pipelined Processor Designs using

Esterel Tools: A Case Study?

(Extended Abstract)

S. Ramesh1 and Purandar Bhaduri2 ??

1 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Powai, Mumbai 400 076, INDIA
Email: ramesh@cse.iitb.ernet.in

2 Applied Technology Group, Tata Infotech Ltd
Seepz, Andheri (E), Mumbai 400 096, INDIA
Email: purandar.bhaduri@tatainfotech.com

Abstract. The design of control units of modern processors is quite
complex due to many speed-up techniques like pipelining and out-of-
order execution. The existing approaches to formal verification of pro-
cessor designs are applicable to very high level descriptions that ignore
timing details of control signals. In this paper, we propose an approach
for verification of detailed design of processors. Our approach suggests
the use of Esterel language which has rich constructs for succinct and
modular description of control. The Esterel simulation tool Xes and ver-
ification tools Xeve and FcTools can be used effectively to catch minor
bugs as well as subtle timing errors. As an illustration, we have developed
an Esterel implementation of DLX pipeline control and verified certain
crucial properties.

1 Introduction

Modern processors employ many techniques like pipelining, branch prediction
and out-of-order execution to enhance their performance. The design and val-
idation of these processors, especially their control circuitry, is a challenging
task [6, 7].

Formal verification techniques, emerging as a viable approach to valida-
tion [10], are still inadequate in verification of large systems like processors.
Recently many new techniques have been proposed specifically for processor
verification [1, 7, 6, 9, 11]. These techniques verify that the given implementation
is equivalent to a simpler sequential model of execution, as described by the
instruction set architecture. But in these approaches, the implementation is at

? Partial support for this work came from the Indo-US Project titled Programming
Dynamical Real-time systems and Tata Infotech Research Laboratory, IIT Bombay.

?? This author’s current address: TRDDC, 54 B, Hadapsar Industrial Estate, Pune 411
013, INDIA. Email: pbhaduri@pune.tcs.co.in

a very high level of abstraction ignoring details of finer timing constraints on
control signals. These details are to be introduced to arrive at the final imple-
mentation that can be realized in hardware. Even if the design at the higher level
of abstraction is proved to be equivalent to a sequential model, later refinements
may introduce timing errors.

The aim of this paper is to propose a verification method for detailed proces-
sor implementations containing timing constraints of control signals. We suggest
the use of Esterel language [3, 2] and its associated verification tools for describ-
ing the implementations and verifying their properties. Esterel has a number
of attractive features that come in handy for our purpose. It provides a nice
separation between data and control. It offers a rich set of high level constructs,
like preemption, interrupts and synchronous parallelism, that are natural for
hardware systems and that enable modular and succinct description of complex
controllers. Besides simulation, Esterel descriptions can be rigorously verified us-
ing the tools Xeve [4] and FcTools [5]. Finally, Esterel programs can be directly
translated into hardware.

In this paper we illustrate our approach by developing an Esterel model of
the DLX pipelined processor control unit [8]. The model has been debugged
using the simulator tool Xes and has been verified to satisfy a number of desired
properties using the verification tools.

2 Esterel Specification of Pipelined Control Unit

The specification is based upon the informal description of DLX processor given
in [8]. We confine ourselves to the control unit specification; the data path spec-
ification can be trivially given using a host language like C.

2.1 The Main Controller

The execution of an instruction in the DLX processor goes through five stages:
Instruction Fetch (IF), Instruction Decode/Register Fetch (ID), Execution/Effective
Address Calculation (EX), Memory Access/Branch Completion (MEM) and Write-
Back (WB). The introduction of pipelining leads to increased complexity in de-
sign in terms of additional registers and control logic due to various hazards.
Pipeline registers are required to store the intermediate values produced by dif-
ferent stages. DLX uses the branch-not-taken prediction scheme and hence to
handle the control hazard that occurs when a branch is taken (determined in
the EX stage), the instruction in the ID stage must be squashed; the handling
of interrupts requires even more complex control logic. Appropriate actions like
data forwarding or stalling have to be taken to handle data hazards, for instance
when an instruction updates a register or memory location that is read by a
subsequent instruction.

Figure 1 gives an Esterel module that models a generic pipeline stage of the
DLX controller. An Esterel program in general consists of one or more modules.
Each module has an input-output interface and reactive code that is executed

module XXUnit:

input GoPrev, Stall, Restart;

output GoNext, StallPrev, RestartPrev;

loop % execute the ‘loop’ body repeatedly

do % the ‘body’ of the ‘do-watching’ statement starts here

signal Go in %Go is a local signal

[

suspend % stop execution

[

loop

await immediate Go; %wait till the other component emits ‘Go’

emit GoNext; % generate the signal GoNext

run XX; % execute the module named XX

await tick % wait for one reaction

end loop

||

loop

await immediate GoPrev; %wait till ‘GoPrev’ is present in the input

await tick; % wait one reaction step

emit Go % generate ‘Go’ signal

end loop

]

when immediate Stall % stop execution of the ‘suspend’ body when ‘Stall’

% is present

||

loop

await tick;

await immediate Stall;

emit StallPrev

end

]

end signal % end of scope of local signal declaration

watching Restart; % abort the ‘watching’ body when ‘Restart’ is present

emit RestartPrev

end loop % end of the outermost loop

end module % end of the module

Fig. 1. A pipeline stage in Esterel

periodically at the phase of the built-in signal tick. Every time a module is
executed, it reads input signals and depending upon the state of the module
generates appropriate output signals and changes the state. Every such exe-
cution is called a reaction. A reaction is assumed to be instantaneous so that
there is no time delay between input consumption and output generation. All
Esterel statements are instantaneous excepting the ‘halt’ statement which does
not terminate at all. The control of an Esterel program resides at one or more
halt statements (more than one when there are concurrent components) which
decide the state of the program. A reaction, besides generating outputs, results
in a change of state with the movement of control points from one set of halt
statements to another.

Esterel possesses a rich set of constructs for describing control. Here we give
a very brief explanation of some of these constructs. The statement await S is a
simple ‘wait construct’ that delays termination until the signal S is present in the
input; await immediate S is a variant which can terminate even in the very first
instant when control reaches the construct. The statement do watching stat

S continues to execute stat as long as the signal S is not present; the moment S
appears on the input, the whole statement terminates aborting the computation
inside stat. The statement suspend stat till S suspends the execution of
stat in all reactions in which S is present; execution continues where it got
suspended when S is not present.

Now we will describe the behavior of the module in Figure 1. For the sake of
simplicity, we have taken the tick signal to define the clock of the processor. Sup-
pose the signals Stall and Restart are not present in a reaction, corresponding
to the uninterrupted flow of an instruction through the pipeline stages. Then the
submodule XX (in the first branch of the parallel operator within the suspend

statement) is executed in the cycle when the local signal Go is present; the Go

signal is present in this cycle provided the GoPrev signal was present in the pre-
vious cycle (in the second branch of the parallel operator within the suspend

statement). At the end of execution of XX, which is assumed to be instantaneous,
the module generates GoNext.

Suppose that Stall is present in a cycle, representing a hazard in the pipeline
stage XX. Then the execution of XX is suspended by the suspend statement and
the signal GoNext is not generated; the signal StallPrev is generated (in the
second branch of the outer parallel operator). If on the other hand the Restart

signal is present, representing an interrupt or a taken branch, then the body of
the outer watchdog primitive is killed and the execution is restarted because of
the presence of the outer loop construct. This results in the loss of information
about the presence of the GoPrev signal in the previous cycle. Also a Restart

triggers a RestartPrev signal.

Thus, XXUnit executes the submodule XX in every cycle in which GoPrev is
present and generates GoNext, as long as Stall or Restart are not present.
A Stall in a cycle suspends the execution of XX while a Restart restarts the
execution of whole module afresh resetting its internal state, i.e., it squashes the
execution of XX.

module CONTROL:

input IssueNextInstr;

output InstrCompleted;

output WritePCn : integer,WritePCb: integer;

inputoutput Restart0, RestartIF, RestartID,

RestartEX, RestartMEM, RestartWB;

inputoutput Stall0, StallIF, StallID, StallEX, StallMEM, StallWB;

signal GoIF, GoID, GoEX, GoMEM

in

[

run IFUnit [signal IssueNextInstr / GoPrev, GoIF / GoNext,

StallIF / Stall, Stall0 / StallPrev,

RestartIF / Restart, Restart0 / RestartPrev]

||

run IDUnit [signal GoIF / GoPrev, GoID / GoNext,

StallID / Stall, StallIF / StallPrev,

RestartID / Restart, RestartIF / RestartPrev]

||

run EXUnit [signal GoID / GoPrev, GoEX / GoNext,

StallEX / Stall, StallID / StallPrev,

RestartEX / Restart, RestartID / RestartPrev]

||

run MEMUnit [signal GoEX / GoPrev, GoMEM / GoNext,

StallMEM / Stall, StallEX / StallPrev,

RestartMEM / Restart, RestartEX / RestartPrev]

||

run WBUnit [signal GoMEM / GoPrev, InstrCompleted / GoNext,

StallWB / Stall, StallMEM / StallPrev,

RestartWB / Restart, RestartMEM / RestartPrev]

end signal

end module

Fig. 2. The control unit for the DLX pipeline stages

The Esterel module in Figure 2 models the behavior of the entire pipeline
controller. Each pipeline stage is an instantiation of the generic module XXUnit

given in Figure 1; for example, IFUnit is obtained from XXUnit by replacing the
command run XX by run IF where the module IF, shown in Figure 3, describes
the behavior of the instruction fetch stage.

In the module CONTROL, the renaming of the Go, Stall and Restart signals
leads to the establishment of a forward Go-chain and two reverse Stall and
Restart-chains. When there is no Stall signal (none of StallIF,· · ·,StallWB
is present), the input IssueNextInstr signal triggers the execution of the five
stages, with the execution of each stage in a cycle triggering via the Go-chain
the execution of the next stage in the next cycle. When StallXX is present, it
stalls the pipeline up to stage XX; this is achieved by the instantaneous trans-
mission of the various Stall signals to the preceding stages via the Stall-chain.
The succeeding stages are not affected by this stall. Similarly, a Restart signal
triggers the restart of all the earlier stages up to the current stage using the
Restart-chain.

2.2 The Pipeline Stages

The Esterel specification of the various pipe stages which instantiate XX in Fig-
ure 1 can now be described. Because of space constraints, we describe only the
IF and EX stages.

module IF:

input ReadPC : integer, BranchTaken;

output WritePCn: integer, IfOut : integer;

function FetchInstr (integer) : integer;

function IncrPC (integer) : integer;

emit IfOut(FetchInstr(?ReadPC));

present BranchTaken

else

emit WritePCn(IncrPC(?ReadPC))

end present;

end module

Fig. 3. IF Stage

The module IF in Figure 3 emits a signal IfOut with a value representing the
current instruction and a signal WritePCn whose value indicates the new value of
PC. The signal BranchTaken indicates a taken branch, and the IF stage writes
a PC value only if this signal is absent, indicating a normal flow of execution. If
the BranchTaken signal is present the PC value is written by the EX stage, shown
in Figure 4, through a signal called WritePCb to indicate a branch in instruction

execution. The external functions FetchInstr and IncrPC abstract the actions
corresponding to fetching an instruction and incrementing the PC.

module EX:

input BranchTaken, Bypass, MemInAdr:integer, MemInVal : integer,

ExInOpcode : integer, ExInOpnd : integer;

output ExOutAdr : integer, ExOutVal : integer, WritePCb:integer;

function AluOpAdr (integer, integer) : integer;

function AluOpVal (integer, integer) : integer;

present Bypass then

emit ExOutAdr(AluOpAdr(?ExInOpcode, ?MemInVal));

emit ExOutVal(AluOpVal(?ExInOpcode, ?MemInVal))

else

emit ExOutAdr(AluOpAdr(?ExInOpcode, ?ExInOpnd));

emit ExOutVal(AluOpVal(?ExInOpcode, ?ExInOpnd))

end present;

present BranchTaken then

emit WritePCb(AluOpAdr(?ExInOpcode, ?ExInOpnd))

end present

end module

Fig. 4. EX Stage

The module EX in Figure 4 emits two signals ExOutAdr and ExOutVal, cor-
responding to the address and value computed by the ALU by operations ab-
stracted by the external functions AluOpAdr and AluOpVal. The presence of the
input signal Bypass indicates that there is a data hazard and hence that the
inputs to ALU are to be taken through a forwarding process from the output
of the EX/MEM pipe stage; in the absence of this signal, the inputs come from
the ID/EX pipe stage. The BranchTaken signal indicates a taken branch and
triggers the signal WritePCb which writes the new branch address into PC.

The above Esterel model of the DLX processor has abstracted away details
about the data path, instruction decoding, alternative actions based on various
types of instructions (such as load/store) and hazard detection. This is the reason
that the signals Bypass, Restart, BranchTaken and Stall have been modeled
as external input signals, rather than being generated internally (by hazard
detection units).

3 Validation using Esterel tools

In this section we outline the validation of the design of the DLX processor
control unit using the Esterel simulation tool Xes and verification tools Xeve and
FcTools. We focus on the micro-properties of the control unit, such as smooth

flow of instructions through the pipeline, absence of deadlock, proper issuing of
stall and restart instructions, and correct behavior of the pipeline with respect to
these signals. We are able to verify that for example, in case of a taken branch
(determined in the EX stage) the instruction following the branch (in its ID
stage) is restarted or aborted. Similarly, we can verify that a stall signal sent to
some stage propagates as a bubble through the pipeline.

The properties verified by us are finer than the macro-property verified in
[7], namely that the pipelined machine has the same effect on visible state as
the sequential one for the same input. The latter property, in its full glory,
cannot be verified using existing Esterel tools because they deal with only control
states. However, the property restricted to control states is still verifiable (see
the paragraph titled Stall in Section 3.1).

3.1 Verification

The simple properties of the DLX pipeline controller mentioned above can be
verified using the Esterel tools Xeve [4] and FcTools [5]. They are verification
environments for Esterel programs modeled as finite state machines (FSMs) with
a user-friendly graphical interface.

The Esterel compiler generates FSMs implicitly in the form of boolean equa-
tions with latches. One of the verification tasks performed by Xeve is to take an
implicit FSM and perform a state minimization using the notion of bisimulation
equivalence. Before minimization a set of input /output signals can be hidden.
This results in a nondeterministic FSM where some transitions may be labeled
by τ , a hidden internal action. Xeve generates minimized FSMs, that can be fur-
ther reduced using some abstraction criterion by FcTools and can be graphically
explored using the tool ATG.

FcTools is a verification tool set for networks of communicating FSMs. Its
capabilities include graphical depiction of automata, reduction of automata and
verification of simple modal properties by observers, counterexample production
and visualization.

In our verification process the original FSM produced by Xeve had about
1500 states, which after making some irrelevant interface signals local got re-
duced to 543 reachable states. This was reduced to 16 states and 72 transitions
after applying the observational equivalence minimization procedure available in
FcTools. Still the automaton could not be inspected due to the large number of
transitions. So we used the powerful abstraction technique available in FcTools
to further reduce the size of the automaton. An abstraction criterion defines a
new set of action symbols that are regular expressions on the action symbols
in the original automaton. The reduction involves abstraction of sequences of
old actions into new actions so that the reduced automaton contains only new
action symbols; further, certain paths in the original automaton are eliminated,
thereby resulting in a small automaton that can be checked easily.

Depending upon the property to be checked, we applied different criteria to
get small automata which we verified with respect to appropriate properties.

Criterion States Transitions

Initial 16 72
Smooth Flow 8 12

Stall 16 32
Branch 1 1

Table 1. Sizes of Reduced Automata

Table 1 summarizes the sizes of the various reduced automata obtained for dif-
ferent criteria. The details about the criteria ‘Smooth Flow’ and ‘Stall’ are given
below. The criterion ‘Branch’ checks for proper updation of the PC value at any
cycle by abstracting paths into two abstract actions ‘success’ and ‘failure’. The
reduced automaton has only one transition with the label ‘success’.

pipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipe pipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebr

pipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipec pipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbr

~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.* ~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*~?S.?I.!WritePCb.~!IC.*

~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.* ~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*~?S.?I.!WritePCb.!IC.*

Fig. 5. Abstraction Criterion for Smooth Flow

Smooth flow of instructions This criterion verifies that every instruction
issued is completed after four cycles in the absence of stalls and branches. The
criterion depicted in Figure 5, defines four abstract actions pipe, pipec, pipebr
and pipecbr which rename the edges satisfying the corresponding regular ex-
pressions, eg., pipebr renames any edge in which a branch has been taken and
no instruction is completed; in the regular expressions, . denotes synchronous
product of input and output events (prefixed by ? and ! respectively) and their

pipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipe pipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipec

pipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebr

pipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipe

pipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbr

pipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipec pipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebrpipebr

pipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipe

pipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbrpipecbr

pipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipecpipec

pipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipe pipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipepipe

Fig. 6. Reduced Automaton for Smooth Flow

negations (prefixed by ~); the event * matches any event. Figure 6 gives the
reduced automaton which can be verified with respect to the desired property
by inspection.

For the sake of clarity in the figures, the signals StallIF, IssueNextInstr,
and InstrCompleted of the original automaton are renamed as S, I and IC

respectively; further the WritePCb signal is treated as being synonymous with
BranchTaken for technical reasons.

Stall The property verified here is that the StallIF signal stalls the IF stage for
a cycle: no instruction is completed four cycles after a StallIF assuming later
stages are not stalled or squashed in the intervening period. The abstraction
criterion for this is shown in Figure 7 and the reduced automaton in Figure 8. In
the reduced automaton there is no path of length five starting with a stall or
a stallc that ends with a ic or stallc edge. Another interesting thing to note
from this automaton is that from every state there is a sequence of ‘stalls’ that
leads to the initial state; this property corresponds to the sequential equivalence
property of [7] for control states.

stallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstall

stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcicicicicicicicicicicicicicicicicic

iiiiiiiiiiiiiiiii

?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*?S.~!WritePCb.~!IC.* + ~?I.~!WritePCb.~!IC.*

?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*?S.~!WritePCb.!IC.* + ~?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*~?S.?I.~!WritePCb.!IC.*

~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*~?S.?I.~!WritePCb.~!IC.*

Fig. 7. Abstraction Criterion for Stall

4 Conclusion

We have proposed the use of Esterel language and tools for verification of modern
processors. Esterel can be used to describe, in sufficient detail and in a modular
and succinct way, control units of processors using its rich set of constructs.
Complex timing properties of Esterel descriptions can be verified using powerful
tools.

We have illustrated the use of Esterel tools for the description of DLX pro-
cessor. The initial results are encouraging. The verification tools Xes, Xeve and
FcTools were found to be quite useful in detecting anomalies ranging from sim-
ple bugs to complex timing errors. We plan to extend our investigation to more
complex processors involving superscalar features like out-of-order executions.
We also plan to investigate, in greater detail, the relative merits of Esterel for
describing control units of processors with respect to the traditional HDLs.

References

1. S. Berezin, A. Biere, Ed. Clarke, and Y. Zhu. Combining symbolic model checking
with uninterpreted functions for out of order processor verification. In G. Gopalakr-
ishnan and P. Windley, editors, FMCAD’98, LNCS 1522. Springer Verlag, 1998.

iiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiii

stall

icicicicicicicicicicicicicicicicic

icicicicicicicicicicicicicicicicic

stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallc

stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallc

iiiiiiiiiiiiiiiii

stallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstallicicicicicicicicicicicicicicicicic

stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallc

iiiiiiiiiiiiiiiii

stallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstall

icicicicicicicicicicicicicicicicic

stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallc

iiiiiiiiiiiiiiiii

stallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstall

icicicicicicicicicicicicicicicicic

stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallc

iiiiiiiiiiiiiiiii

stallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstall

icicicicicicicicicicicicicicicicic

stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallc

iiiiiiiiiiiiiiiii
stallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstall

icicicicicicicicicicicicicicicicic

stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallc

iiiiiiiiiiiiiiiii

stallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstall

icicicicicicicicicicicicicicicicic
stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallc

iiiiiiiiiiiiiiiiistallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstallstall

icicicicicicicicicicicicicicicicic

stallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallcstallc

Fig. 8. Reduced Automaton for Stall

2. G. Berry. The Foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT
Press, 1998.

3. G. Berry and G. Gonthier. The Esterel synchronous programming language: De-
sign, semantics, implementation. Science Of Computer Programming, 19(2), 1992.

4. A. Bouali. XEVE: An Esterel Verification Environment. Available by ftp from
ftp-sop.inria.fr as file /meije/verif/xeve-doc.ps.gz.

5. A. Bouali, A. Ressouche, R. de Simone, and V. Roy. The FcTools User Manual.
Available by ftp from ftp-sop.inria.fr as file /meije/verif/fc2userman.ps.

6. R. E. Bryant. Formal Verification of Pipelined Processors. In Proc. TACAS 98,

LNCS 1384. Springer Verlag, March-April 1998.
7. J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor

Control. In Proc. CAV’94, LNCS 818. Springer Verlag, June 1994.
8. J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach,

Second Edition. Morgan Kaufman Publishers Inc., 1995.
9. R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Decomposing the Proof of Cor-

rectness of Pipelined Microprocessors. In Proc. CAV’98, LNCS 1427. Springer
Verlag, June/July 1998.

10. T. Kropf, editor. Formal Hardware Verification, LNCS 1287. Springer Verlag,
1997.

11. J. U. Skakkebaek, R. B. Jones, and D. L. Dill. Formal Verification of Out-of-order
Execution using Incremental Flushing. In Proc. CAV’98, LNCS 1427. Springer
Verlag, June 1998.

