next up previous
Next: About this document ... Up: tut3 Previous: tut3

Some Answers

Griffiths (3.12)

\begin{displaymath}
\Phi(x,y) = \frac{8V_0}{\pi} \sum_{j=0}^\infty \frac{1}{4j+...
...4j+2)\pi x}{a}\right)
\sin\left(\frac{(4j+2)\pi y}{a}\right)
\end{displaymath} (1)

Griffiths (3.14)

\begin{displaymath}
\Phi(x,y) = \frac{4V_0}{\pi} \sum_{\textrm{odd} n}^\infty
...
...ht)
\sin\left(n\pi y/a\right)}
{\sinh\left(n\pi b/a\right)}
\end{displaymath} (2)

Griffiths (3.15)

\begin{displaymath}
\Phi(x,y) = \frac{16V_0}{\pi^2} \sum_{\textrm{odd } m}\sum_...
...\left(n\pi y/a\right)}
{\sinh\left(\sqrt{m^2+n^2}\pi\right)}
\end{displaymath} (3)

Jackson (2.13)
(Unfortunately I chose wrong geometry. Change $\phi\rightarrow\phi-\pi/2$ to get Jackson's answer). For $\rho < b$, the general solution is
\begin{displaymath}
\Phi(\rho,\phi) = a_0 + \sum_{n=1}^\infty
\rho^n(a_n\sin(n\phi)+b_n\cos(n\phi))
\end{displaymath} (4)

Boundary conditions:
$\displaystyle \Phi(b,\phi)$ $\textstyle =$ $\displaystyle V_1 \quad\quad 0\le\phi\le\pi/2$ (5)
  $\textstyle =$ $\displaystyle V_2 \quad\quad \pi/2\le\phi\le\pi$ (6)

Then, $a_0 = (V_1+V_2)/2$, $a_n=0$ for all even $n > 0$, $a_n=2(V_1-V_2)/(\pi nb^n)$ for all odd $n > 0$. $b_n = 0$ for all $n$. Thus,
$\displaystyle \Phi(\rho,\phi)$ $\textstyle =$ $\displaystyle (V_1+V_2)/2 + \frac{2(V_1-V_2)}{\pi}
\sum_{n=0}^\infty \frac{1}{2n+1} \left(\frac{\rho}{b}\right)^{2n+1}
\sin((2n+1)\phi)$ (7)
  $\textstyle =$ $\displaystyle (V_1+V_2)/2 + \frac{2(V_1-V_2)}{\pi}\,\textrm{Im }
\sum_{n=0}^\infty \frac{1}{2n+1}
\left(\frac{\rho}{b}e^{i\phi}\right)^{2n+1}$ (8)
  $\textstyle =$ $\displaystyle (V_1+V_2)/2 + \frac{(V_1-V_2)}{\pi}\,\textrm{Im }
\ln \left( \frac{1+\frac{\rho}{b}e^{i\phi}}
{1-\frac{\rho}{b}e^{i\phi}}\right)$ (9)
  $\textstyle =$ $\displaystyle (V_1+V_2)/2 + \frac{(V_1-V_2)}{\pi}
\tan^{-1} \left( \frac{2\rho b\sin\phi}{b^2-\rho^2}\right)$ (10)

And the charge density is
\begin{displaymath}
\sigma(\phi) = -\epsilon_0 \frac{(V_1-V_2)}{\pi b\cos\phi}
\end{displaymath} (11)

Jackson (2.14)
Jackson (2.17)
Use following identities to prove the result:
    $\displaystyle \delta(\v{r}-\v{r'}) =\frac{1}{\rho}\delta(r-r')\delta(\phi-\phi')$ (12)
    $\displaystyle \delta(\phi-\phi') = \frac{1}{2\pi}\sum_{-\infty}^{\infty} e^{i m(\phi-\phi')}$ (13)

To find $g_m$ when $m=0$, choose
$\displaystyle g_0(\rho,\rho')$ $\textstyle =$ $\displaystyle A \quad\quad \rho < \rho'$ (14)
  $\textstyle =$ $\displaystyle B\ln\rho \quad\quad \rho' < \rho$ (15)

But then $g_0$ does not vanish as $\rho\rightarrow\infty$. When can you use this Green's Function?
Jackson (2.20)
Use the Green's Function derived above.


next up previous
Next: About this document ... Up: tut3 Previous: tut3
Charudatt Kadolkar 2007-02-21