
MA 511: Computer Programming
Lecture 16: Macro & Storage Classes

http://www.iitg.ernet.in/psm/indexing_ma511/y10/index.html

Partha Sarathi Mandal
psm@iitg.ernet.ac.in

Dept. of Mathematics, IIT Guwahati

Semester 1, 2010-2011

Macro Definition

• We have already seen that #define statement can
be used to define symbolic constants within a C
program.

Ex: #define SIZE 100
int Array[SIZE];

• It can be used to define macros
– Single identifiers that are equivalent to expressions,

complete statements or groups of statements.
– It looks like functions in that sense.
– These are treated differently during the compilation

process.

Example: Macro

#include <stdio.h>

#define area length*width

main(){
int length, width;
printf("Length = ");
scanf("%d", &length);
printf("width = ");
scanf("%d", &width);
printf("area = %d", area);

}

Example: Macro

#include <stdio.h>
main(){

int c, i, n;
printf(“number of lines : ”);
scanf(“%d”, &n);
printf(“\n”);

for(i =1; i <= n; i++){
for(c=1; c <= n-i; c++)

putcar(‘ ’);
for(c=1; c <=2*i-1; c++)

putcar(‘* ’);
printf(“\n”);

}
}

#include <stdio.h>

#define loop for(i=1; i<= n; i++){ \
for(c=1; c<=n-i; c++) \

putchar(' '); \
for(c=1; c<=2*i-1; c++) \

putchar('*'); \
printf("\n"); \

}
main(){

int c, i, n;
printf("number of lines : ");
scanf("%d", &n);
printf("\n");

loop
}

*

n = 6

(n)

(n)

C Storage Classes

• C has a concept of 'Storage classes' which are
used to define the scope (visibility) and life time
of variables and/or functions.

– auto is the default storage class for local variables.

– static is the default storage class for global variables

– extern defines a global variable that is visible to ALL
object modules.

• When you use 'extern' the variable cannot be initialized as
all it does is point the variable name at a storage location
that has been previously defined.

MA511: Computer Programming
Partha S Mandal, IITG

extern Storage Class

f1.c
void write_extern(void);
extern int count;
void write_extern(void) {

printf(“f1 count is %i\n", count++);
}

MA511: Computer Programming
Partha S Mandal, IITG

f2.c

int count=5;

main() { write_extern();

printf(“f2 count is %i\n", count++);

}

cc f1.c f2.c -o file

./file

f1 count is 5

f2 count is 6

global variable static storage class

#include<stdio.h>
void func(void);
static count1=10; /*Global variable -static is the default*/
main() {

while (count1--)
func();

}

void func(void) {
/* ‘count2' is local to 'func' - it is only initialized at run time. */
/* Its value is NOT reset on every invocation of 'func' */

static count2=5;
count2++;
printf(" count2 is %d count1 is %d\n", count2, count1);

}

Output:

count2 is 6 count1 is 9

count2 is 7 count1 is 8

count2 is 8 count1 is 7

count2 is 9 count1 is 6

count2 is 10 count1 is 5

count2 is 11 count1 is 4

count2 is 12 count1 is 3

count2 is 13 count1 is 2

count2 is 14 count1 is 1

count2 is 15 count1 is 0

Summary of extern and static

Objective How Achieved

To access variable x external to all
functions and defined in file i from file j

Declare x as extern in file j

To make a variable x external to all
functions and defined in file i not
accessible to any other file

Declare x as static in file i

To use a function f(x) defined in file i in
file j

No spl declaration needed

To make a function float f(float x) defined
in file i inaccessible to all other files

Declare f(x) as: static float f(float x);

