- The objective of this data structure is to maintain a balanced binary search tree (BBST). When there are n keys stored in the AVL^{1} tree, its height is guaranteed to be $O(\lg n)$. This helps in accomplishing search, insert, delete, split, and join operations in $O(\lg n)$ time in the worst-case.
- The AVL tree is a BST on the keys stored in it. The balance condidtion states that for every node v in the tree, $-1 \leq(h(v . r i g h t)-h(v . l e f t)) \leq 1$. At every node v, the AVL tree stores the balance information $h(v . r i g h t)-h(v . l e f t)$ in a two-bit field $v . b$. It is immediate that $\forall_{v} v . b \in\{-1,0,1\}$ whenever the given BST is an AVL tree.

Observation: Given $v . b$ for every node v of a tree T, the height of T can be determined in $O(h e i g h t(T))$ time.

- For an AVL tree T of height h, let $n(h)$ be the minimum number of nodes that T can have.

It is obvious, $n(0)=1, n(1)=2$. Since the T has height h, either left or right subtree must have height $h-1$. To minimize the number of nodes in T, without violating the balance condition, the height of the other subtree can be no smaller than $h-2$. Hence,

$$
\begin{aligned}
& n(h)=n(h-1)+n(h-2)+1 \text { for } h \geq 2 \\
& \Rightarrow n(h)>n(h-1)+n(h-2) \\
& \Rightarrow n(h)>2 n(h-2)>2^{2} n(h-4)>\ldots>2^{i} n(h-2 i) \\
& \Rightarrow n(h)>2^{i} n(h-2 i) .
\end{aligned}
$$

Since $h-2 i \geq 2, i \leq \frac{h}{2}-1$. Substituting $i=\frac{h}{2}-1$ in the above, h is $O(\lg n)$.
The insert, delete, split, and join algorithms ensure at no node balance condition is violated. Since no additional explicit algorithm is needed to balance the tree, AVL tree is a self-balancing binary search tree.

- Let T^{\prime} be the tree resultant of right rotating at a node d of a BST T. Refer the below figure. Since the inorder traversals of T and T^{\prime} yield the same ordering of keys, and since the relation of b, d, keys in subtrees A, C, and E are correct with respect to keys in $T-T_{\text {d.parent }}, T^{\prime}$ is a BST. The same holds good after any left rotate as well.

Further, a left or a right rotation takes $O(1)$ time in the worst-case.
Observation: With a right rotate at d, the $\operatorname{depth}(d)$ increases by one and depth(d.left) decreases by one. With a left rotate at b, the $\operatorname{depth}(b)$ increases by one and depth(b.right) decreases by one. However, the heights of d and b post a rotation depend on the heights of A, C, and E.

[^0]- Algorithm for inserting node x into AVL tree T :

First, node x is inserted into BST using the insertion algorithm for BSTs. Let P be the simple path from x to the root. While walking along P from x, at every node v, this algorithm updates $v . b$. Further, for the first node d along P at which the AVL balance condition is violated, if any, and its precedecessor b along P,
if x is in a subtree which does not lie between d and b
then //cases in which a single rotation suffices
if b is the left child of $d \quad / / x$ is inserted into T_{b}.left

else //cases in which two rotations are needed if b is the left child of d

Observation: While walking along P from x, for any node v that occurs on this path, modified $v . b$ can be determined in constant time in the worst-case.

Below, we present the correctness of (1) and (3). The analysis of cases (2) and (4) is symmetric.

- - correctness of (1) -
* just before inserting x into A (while the insertion of x causing a balance violation at d):

- since the insertion of x in T_{b} causing a violation at $d, d . b$ cannot be equal to 0 or +1
- since the first violation occurs at d after inserting x into $A, b . b \neq-1$; and, if $b . b=1$, violation does not occur at d after insertion
- let $h-1$ be the height of E; then, since $d . b=-1, h(b)=h$; since $b . b=0, h(A)=h(C)=h-1$; further, $h(d)=h+1$
* just after inserting x into A :

- since $h(A \cup\{x\})=h, h(d)=h+2 ; b . b=-1 ; d . b=-2$
* just after right rotate at d :

- $d . b=h(E)-h(C)=(h-1)-(h-1)=0 ; b . b=h(d)-h(A \cup\{x\})=h-h=0 ;$
- - correctness of (3) -
* just before inserting x into C (while the insertion of x causing a balance violation at d):

- again, since the insertion of x in T_{b} causing a violation at $d, d . b$ cannot be equal to 0 or +1
- since the balance violation occurs first at d along x to d path after inserting x into $C, b . b \neq 1$; and, if $b . b=-1$, violation does not occur at d after insertion
- let $h-1$ be the height of E; then, since $d . b=-1, h(b)=h$; since $b . b=0, h(A)=h(C)=h-1$; hence, $h(d)=h+1$
* just after inserting x into C :

- since $h(C \cup\{x\})=h, b . b=1$; since $h(b)=h+1$ and since $h(E)=h-1$, d.b $=-2$; further, $h(d)=h+2$
- since $h(c)=h(C \cup\{x\})=h, h-2 \leq h\left(C_{1}\right) \leq h-1$: if $h\left(C_{1}\right)<h-2$, the first violation along x to d path does not occur at d; if $h\left(C_{1}\right)>h-1, h(c)>h$
analogously, since $h(C \cup\{x\})=h, h-2 \leq h\left(C_{2}\right) \leq h-1$
* just after left rotate at b :

- height of T_{d} continues to be $h+2$; balance violation at d is not yet got fixed
* just after right rotate at d :

- since $\max \left(h\left(C_{1}\right), h\left(C_{2}\right)\right)=h-1, h(A)=h-1$, and $h(E)=h-1, h(c)=h+1$;
- since $h(b)=h$ and $h(d)=h, c . b=0$;
- since $h-2 \leq h\left(C_{1}\right) \leq h-1, b . b=-1$ or 0
and, since $h-2 \leq h\left(C_{2}\right) \leq h-1, d . b=+1$ or 0
- Fixing imbalance at d ensures $v . b \in\{-1,0,1\}$ at every node v of $T: h(b)$ after insertion is made equal to $h(d)$ before insertion in single rotate case; $h(c)$ after insertion is made equal to $h(d)$ before insertion in double rotate case.

The insertion involves traversing the simple path from x to d and one/two rotations. Since the height of an AVL tree is $O(\lg n)$ and since it takes $O(1)$ time for any one rotate, the time complexity of inserting a node into a AVL tree is $O(\lg n)$. Further, since every node obeys the balance condition in the updated tree T^{\prime}, the height of T^{\prime} is $O(\lg n+1)$, where $n+1$ is the nuber of nodes in T^{\prime}.

- Algorithm to delete a node z from the AVL tree T :

After deleting node z from T, let P be the path from the position where x was located to the root. (The significance of x was detailed in the algorithm for deleting a node from the BST.) For every node d along P at which the AVL balance condition is violated, if any:
if $d . b<-1$
if $d . l e f t . b \leq 0$
then right-rotate (d) - (5)
else left-rotate $($ d.left $)+\operatorname{right-rotate}(d)$
if $d . b>1$
if d.right. $b \geq 0$
then left-rotate (d)
else right-rotate $($ d.right $)+$ left-rotate (d)

Essentially, (5) and (6) handle node getting removed from $T_{\text {d.right }}$; (7) and (8) handle node getting removed from $T_{\text {d.left }}$. Below, we present the correctness of (5) and (6). The analysis of cases (7) and (8) is symmetric.

Observation: Analogous to the case of insertion, while walking along P from x, for any node v that occurs on this path, modified $v . b$ can be determined in constant time in the worst-case.

- — correctness of (5) -
* just before deleting z from $E \cup\{z\}$ (while that deletion causing a balance violation at d):

- since deleting z from $E \cup\{z\}$ causing a violation at $d, d . b \neq 1$ and $d . b \neq 0$
- (5) occurs only if $b . b=-1$ or $0((6)$ handles the case of $b . b=1)$
- let $h(E \cup\{z\})=h$; then, since $d . b=-1, h(b)=h+1$
- if $b . b=0, h(A)=h(C)=h-(\mathrm{I})$
if $b . b$ is $-1, h(C)=h-1$ and $h(A)=h-$ (II)
* just after deleting z from $E \cup\{z\}$:

- since there is a violation at d upon deleting z from $E \cup\{z\}, d . b=-2$; since $d . b$ is getting changed due to deletion, $h(E)=h-1$
* just after right rotate at d :

- in case $(\mathrm{I}), h(A)=h(C)=h$ and $h(E)=h-1$; hence, $h(d)=h+1, h(b)=h+2, d . b=-1, b . b=1$
- in case (II), $h(A)=h, h(C)=h-1$, and $h(E)=h-1$; hence, $h(d)=h, h(b)=h+1, d . b=0, b . b=0$
- — correctness of (6) -
* just before deleting z from $E \cup\{z\}$ (while that deletion causing a balance violation at d):

- again, since deleting z from $E \cup\{z\}$ causing a violation at $d, d . b \neq 1$ and $d . b \neq 0$
- let, $h(E \cup\{z\})=h$; since $d . b=-1, h(b)=h+1$; hence, $h(d)=h+2$
- $b . b=1$ (since the case of $b . b$ equal to either 0 or -1 was handled in (5))
- since $b . b=1, h(C)=h$ and $h(A)=h-1$
* just after deleting z from $E \cup\{z\}$:

- since $d . b$ was -1 , the violation occurs at d only if $d . b$ changes to -2
- since there is a violation at d, the $h(E)$ must be changing from h; hence, $h(E)=h-1$
- since $h(C)=h$ and since there is no violation at c, various possible values for $\left(h\left(C_{1}\right), h\left(C_{2}\right)\right)$ tuple are ($h-1, h-1$), $(h-1, h-2),(h-2, h-1)$
* after left rotate at b :

* after right rotate at d :

- $h(c)=\max \left(h(A), h\left(C_{1}\right), h\left(C_{2}\right), h(E)\right)+2=\max \left(h-1, \max \left(h\left(C_{1}\right), h\left(C_{2}\right)\right), h-1\right)+2=h+1$
- since $h(E)=h-1$ and $h-2 \leq h\left(C_{2}\right) \leq h-1$, d.b is 0 or +1 ; analogously, $b . b$ is 0 or -1
- Since the $h(d)$ before deletion is $h+2$ and $h(c)$ after two rotations is $h+1$, further ancestors need to be checked for the balancing condition.

Since the $h(d)$ before deletion could differ from $h(b)$ post rotation(s) in some of the cases of deletions, unlike in insert, further ancestors need to be checked for possible balance condition violation.

- The deletion algorithm takes $O(\lg n)$ time: the work involves, in the worst-case, at every node v on the simple path from x to the root, at most a couple of rotations and updating the balance information at a constant number of nodes in the vicinity of v.
- The following observation is useful in joining AVL trees:

For any AVL tree T of height h, there always exists a node on the right spine of T whose height is either i or $i+1$, for any $0 \leq i \leq h$. However, there is no guarantee that the right spine of T to have a node of height i or a node of height $i+1$. (Refer to below figure.) Specifically, the last node on the right spine of T is guaranteed to have height either 0 or 1 .

no node on the right spine has height $h-2$

* Given two AVL trees T_{1} and T_{2} with every key in T_{1} less than or equal to every key in T_{2}, the following algorithm joins (merges) T_{1} and T_{2} :
(a) using the balance information stored at nodes, determine height $\left(T_{1}\right)$ and $\operatorname{height}\left(T_{2}\right) \leftarrow$ takes $O\left(\operatorname{height}\left(T_{1}\right)+\operatorname{height}\left(T_{2}\right)\right)$ time
w.l.o.g., suppose $h e i g h t\left(T_{1}\right) \geq h e i g h t\left(T_{2}\right)$; the other case is analogous
(b) find a node x in T_{2} such that $x . k e y$ is the minimum among keys stored in $T_{2} \leftarrow$ takes $O\left(\operatorname{height}\left(T_{2}\right)\right)$ time
- using the algorithm detailed above, delete x from AVL tree $T_{2} \leftarrow$ takes $O\left(\operatorname{height}\left(T_{2}\right)\right)$ time
- let T_{2}^{\prime} be T_{2} sans node x
(c) using the balance information stored at nodes along the right spine and $\operatorname{height}\left(T_{1}\right)$, starting from $\operatorname{root}\left(T_{1}\right)$, walk along the right spine of T_{1} to find a node y whose height equals to either $\operatorname{height}\left(T_{2}^{\prime}\right)$ or $\operatorname{height}\left(T_{2}^{\prime}\right)+1 \leftarrow \operatorname{takes} O\left(1+\operatorname{height}\left(T_{1}\right)-\operatorname{height}\left(T_{2}^{\prime}\right)\right)$ time
(d) hang T_{y} as the left child of x and T_{2}^{\prime} as the right child of x; make y.parent in T_{1} as the parent of x \leftarrow takes $O(1)$ time
(e) while walking along the simple path from x to root of the resultant tree, at every node v, if the balance condition is violated at v, fix with one/two left/right rotations as in insert algorithm for AVL trees ${ }^{2} \leftarrow$ takes $O\left(1+\operatorname{height}\left(T_{1}\right)-\operatorname{height}\left(T_{2}^{\prime}\right)\right)$ time
- let this tree be T

* Correctness: Since keys in T_{y} are $\leq x . k e y$, since keys in T_{2}^{\prime} are $>x$.key, and since $x . k e y>y$.parent.key, the T is a BST. The violation of balance condition due to deletion of x from T_{2} is taken care of by the delete algorithm for AVL trees. The violations are fixed while traversing along the simple path from x to root. Hence, the resultant tree is an AVL tree.

[^1]* This algorithm takes $O\left(\operatorname{height}\left(T_{1}\right)+\operatorname{height}\left(T_{2}\right)\right)$ time to join two AVL trees.
- Corollary: Given AVL trees T_{1} and T_{2} with their respective heights, and a key k such that every key in T_{1} is less than or equal to k and every key in T_{2} is greater than k, the algorithm to join T_{1}, T_{2} and k into an AVL tree takes $O\left(1+\left|\operatorname{height}\left(T_{1}\right)-\operatorname{height}\left(T_{2}\right)\right|\right)$ time.

Proof: Since step (a) and step (b) of the algorithm listed above are avoided.

- Given an AVL tree T with n keys and a key k, split T into two AVL trees $T^{\prime}, T^{\prime \prime}$ such that (i) T^{\prime} has every key of T less than or equal to k and $T^{\prime \prime}$ has every key of T strictly greater than k, and (ii) the sum of the number of nodes in T^{\prime} and the number of nodes in $T^{\prime \prime}$ is equal to the number of nodes in T.

dashed line path is the search path for k in $T ; T^{\prime}$ is in red and $T^{\prime \prime}$ is in blue
* For easier understanding, the algorithm below is adapted to the above example:
(a) Using the balance information stored at nodes, compute the height of $T \leftarrow \operatorname{takes} O(\lg n)$ time
(b) $T_{1}=\operatorname{AVLJoin}\left(T_{\text {a.left }}, h\left(T_{\text {a.left }}\right), a, T_{b . l e f t}, h\left(T_{b . l e f t}\right)\right)$
$T_{2}=\operatorname{AVLJoin}\left(T_{1}, h\left(T_{1}\right), b, T_{\text {d.left }}, h\left(T_{\text {d.left }}\right)\right)$
$T_{3}=\operatorname{AVLJoin}\left(T_{2}, h\left(T_{2}\right), d, T_{\text {f.left }}, h\left(T_{\text {f.left }}\right)\right)$
$T_{4}=\operatorname{AVLJoin}\left(T_{3}, h\left(T_{3}\right), f, T_{\text {g.left }}, h\left(T_{\text {g.left }}\right)\right)$
$T_{5}=A V \operatorname{LJoin}\left(T_{4}, h\left(T_{4}\right), g, T_{h . l e f t}, h\left(T_{h . l e f t}\right)\right)$
AVLInsert $\left(T_{5}, h\right)$
\leftarrow This algorithm takes $O(\lg n)$ time, due to the following: heights of subtrees $T_{1}, T_{2}, T_{3}, \ldots$ can be determined as part of AVLJoin, heights of $T_{\text {a.left }}, T_{\text {d.left }}, \ldots$ are determined when roots of those
subtrees are encounted while exploring the search path for k, above corollary, and telescoping of terms involved ${ }^{3}$ in summing time complexities of joins.
(c) $T_{1}=A V \operatorname{LJoin}\left(T_{\text {e.right }}, h\left(T_{\text {e.right }}\right), c, T_{\text {c.right }}, h\left(T_{\text {c.right }}\right)\right)$
$T_{2}=\operatorname{AVLJoin}\left(T_{\text {i.right }}, h\left(T_{\text {i.right }}\right), e, T_{1}, h\left(T_{1}\right)\right)$
AVLInsert $\left(T_{2}, i\right)$
\leftarrow This part of the algorithm also takes $O(\lg n)$ time.
* The correctness of this AVLSplit algorithm is immediate given the correctness of BST split algorithm. An algorithm for the latter was detailed and a proof of correctness for the same was provided in an earlier lecture.

[^2]
[^0]: ${ }^{1}$ named after its inventors Adelson-Velskii and Landis

[^1]: ${ }^{2}$ like in insert algorithm, it suffices to fix the first violation along this path

[^2]: ${ }^{3}$ since the height of T_{1} is at most $\max \left(h\left(T_{a . l e f t}, T_{b . l e f t}\right)\right)+2$, since the height of T_{2} is at $\operatorname{most} \max \left(h\left(T_{1}\right), h\left(T_{d . l e f t}\right)\right)+2$, etc.

