
Two famous theorems on (anti)chains R. Inkulu

• A subset of a poset such that every two elements of this subset are comparable is called a chain. A
maximal chain is a chain that is not a proper subset of any other chain. A maximum chain is a chain that
has cardinality at least as large as every other chain. The height of a poset is the cardinality of a maximum
chain.

• A subset of a poset is called an antichain if every two elements of this subset are incomparable is called
an antichain. A maximal antichain is an antichain that is not a proper subset of any other antichain. A
maximum antichain is an antichain that has cardinality at least as large as every other antichain. The width
of a poset is the cardinality of a maximum antichain.

• Dilworth’s theorem: If w is the width of a poset (S,≼), then there exists a partition S = ∪w
i=1Ci, where

Ci is a chain.

[The following is a proof by induction on |S|.]
* Basis: Consider a set S with one element, say S = {a}. In (S,≼), the only maximum antichain is {a},

its size is 1, and C1 = {a} with C1 = S.

* IH: For every k′ ≤ k, if k′ is the width of poset (S − {a},≼), then there exists a partition C =
C1 ∪ . . . ∪ Ck′ of S − {a}, where a is a maximal element along a chain of (S,≼).
Let A′ be a maximum antichain of (S − {a},≼).

- Lemma 1: For every Ci ∈ C, Ci ∩A′ ̸= ϕ. Specifically, A′ has exactly one element form each Ci ∈ C.
Proof: Suppose no element of a chain in this decomposition belongs to A′, then A′ cannot be an
antichain of size k: If A′ has no element from a Cj′ ∈ C, then two elements in A′ belong to a chain
Cj for j ̸= j′. However, if two elements in A′ belong to a chain Cj ∈ C, then those elements are
comparable w.r.t. ≼; and, hence A′ cannot be an antichain in that case.
Since IH only says that there exists an A′ and the chain decomposition, via the following lemma, we
determine a maximum antichain A of (S − {a},≼) given a chain decomposition comprising k chains.

- Lemma 2: For every Ci ∈ C, let xi be the maximal element in Ci that belongs to a maximum antichain
Ai of (S − {a},≼). Then, A = {x1, . . . , xk} is an antichain of (S − {a},≼).
Proof: For every i, Ai always exists, since an element x′i of Ci belongs to antichain A′. (For example,
such an element can be found by walking along Ci from top to bottom.)
Suppose xj′′ ∈ Ai ∩ Cj . From the definition of xj , we know xj′′ ≼ xj . Suppose xj ≼ xi. Then, from
transitivity, xj′′ ≼ xi. However, xj′′ and xi are part of an antichain; therefore, xj ̸≼ xi.
Analogously, suppose xi′′ ∈ Aj ∩ Ci. From the definition of xi, we know xi′′ ≼ xi. Suppose xi ≼ xj .
Then, from transitivity, xi′′ ≼ xj . However, xi′′ and xj are part of an antichain; therefore, xi ̸≼ xj .
For every xi, xj ∈ A, since xj ̸≼ xi and xi ̸≼ xj , A is an antichain.

* IS: Since a is a maximal element of (S,≼), there are two possibilities: xi ≼ a for some Ci ∈ C (via
maximal element along Ci) or xi ̸≼ a for every Ci ∈ C.
In the latter case, a is not related to any element in A. Hence, using induction hypothesis, C1 ∪ . . . ∪
Ck ∪ {a} is a partition of S into k + 1 chains. Further, due to Lemma 2 and since no xi is related to a,
it is immediate to note A ∪ {a} is an antichain of size is k + 1.
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In the former case, consider (S − Ci − {a},≼). From the induction hypothesis, S − Ci − {a} is
partitioned into C′ = {C1, . . . , Ci−1, Ci+1, . . . , Ck} of chains. (Note that S − Ci − {a} has size
smaller than |S|; hence, we were able to apply IH, by the means of strong induction.) And, since A is
an antichain (Lemma 2), (S − Ci − {a},≼) has an antichain A − {xi}, which is of size k − 1. The
chains in C′ together with the chain formed by the subpart of Ci underneath a (including a) is a partition
of S into k chains, while A is an antichain of size k.
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[Illustrating the conventions in the above proof. In the first case of IS, a is above the maximal element of a chain, say Ci. In the second case of

IS, a is located on its own chain. The dashed lines indicate elements beyond elements of A.]

• Sperner’s lemma: The size of a largest antichain of any poset (P(S),⊆) is
(

n
⌊n
2
⌋
)
, where S = {1, 2, . . . , n}.

* for any fixed k, all k-sets together form an antichain;
for k = ⌊n2 ⌋, there exists an antichain of size ⌊n2 ⌋

* no antichain of size >
(

n
⌊n
2
⌋
)

is possible:
consider adding one by one of the elements in S along each chain, leading to, number of chains being n!;
for any element A of any antichain F with |A| = k, there are k!(n−k)! chains that contain A (each chain
comprising monotonically increasing sized sets from ϕ to S containing A);
denoting the number of k-sets F contains with mk,
since no chain can pass through two different sets A and B of F , number of chains passing through all
the members of F is

∑n
k=0mkk!(n− k)!, which is ≤ n!⇒

∑n
k=0

mk

(nk)
≤ 1 ⇒ 1

( n
⌊n/2⌋)

∑n
k=0mk ≤ 1
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