Two famous theorems on (anti)chains R. Inkulu

* A subset of a poset such that every two elements of this subset are comparable is called a chain. A
maximal chain is a chain that is not a proper subset of any other chain. A maximum chain is a chain that
has cardinality at least as large as every other chain. The height of a poset is the cardinality of a maximum
chain.

* A subset of a poset is called an antichain if every two elements of this subset are incomparable is called
an antichain. A maximal antichain is an antichain that is not a proper subset of any other antichain. A
maximum antichain is an antichain that has cardinality at least as large as every other antichain. The width
of a poset is the cardinality of a maximum antichain.

* Dilworth’s theorem: If w is the width of a poset (.5, <), then there exists a partition S = U}” ; C;, where
C; is a chain.

[The following is a proof by induction on |S|.]

* Basis: Consider a set .S with one element, say S = {a}. In (S, x), the only maximum antichain is {a},
its size is 1, and Cy = {a} with C; = S.

* TH: For every k' < k, if k¥’ is the width of poset (S — {a}, <), then there exists a partition C =
C1U...UCy of S — {a}, where a is a maximal element along a chain of (S, <).
Let A’ be a maximum antichain of (S — {a}, ).

- Lemma 1: For every C; € C, C; N A’ # ¢. Specifically, A’ has exactly one element form each C; € C.
Proof: Suppose no element of a chain in this decomposition belongs to A’, then A’ cannot be an
antichain of size k: If A" has no element from a Cy € C, then two elements in A’ belong to a chain
C; for j # j'. However, if two elements in A’ belong to a chain C; € C, then those elements are
comparable w.r.t. <; and, hence A’ cannot be an antichain in that case.

Since TH only says that there exists an A’ and the chain decomposition, via the following lemma, we
determine a maximum antichain A of (S — {a}, <) given a chain decomposition comprising & chains.

- Lemma 2: For every C; € C, let x; be the maximal element in C; that belongs to a maximum antichain
A;of (S —{a},<). Then, A = {z1,...,x} is an antichain of (S — {a}, X).

Proof: For every 4, A; always exists, since an element 2, of C; belongs to antichain A’. (For example,
such an element can be found by walking along C; from top to bottom.)

Suppose xj» € A; N C;. From the definition of x;, we know z;» < x;. Suppose z; < x;. Then, from
transitivity, x;» < ;. However, x;» and x; are part of an antichain; therefore, z; X x;.

Analogously, suppose z;» € A; N C;. From the definition of x;, we know x;» < x;. Suppose z; < ;.
Then, from transitivity, x;» < xj. However, z;» and x; are part of an antichain; therefore, x; £ x;.
For every x;,z; € A, since z; # x; and z; £ =, A is an antichain.

* IS: Since a is a maximal element of (S, <), there are two possibilities: z; < a for some C; € C (via
maximal element along C;) or z; # a for every C; € C.

In the latter case, a is not related to any element in A. Hence, using induction hypothesis, C; U ... U
Cr U {a} is a partition of S into k + 1 chains. Further, due to Lemma 2 and since no z; is related to a,
it is immediate to note A U {a} is an antichain of size is k + 1.
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In the former case, consider (S — C; — {a}, <). From the induction hypothesis, S — C; — {a} is
partitioned into C' = {C4,...,Ci—1,Cit1,...,Ck} of chains. (Note that S — C; — {a} has size
smaller than |S/|; hence, we were able to apply IH, by the means of strong induction.) And, since A is
an antichain (Lemma 2), (S — C; — {a}, <) has an antichain A — {z;}, which is of size k¥ — 1. The
chains in C’ together with the chain formed by the subpart of C; underneath a (including a) is a partition
of S into k chains, while A is an antichain of size k.

[Ilustrating the conventions in the above proof. In the first case of IS, a is above the maximal element of a chain, say C;. In the second case of

IS, a is located on its own chain. The dashed lines indicate elements beyond elements of A.]

Sperner’s lemma: The size of a largest antichain of any poset (P(S), C) is (LZJ)’ where S = {1,2,...,n}.
2

for any fixed k, all k-sets together form an antichain;
for k = | %], there exists an antichain of size | % |

no antichain of size > (@ J) is possible:

consider adding one by one of the elements in S along each chain, leading to, number of chains being n!;
for any element A of any antichain F with | A| = k, there are k!(n — k)! chains that contain A (each chain
comprising monotonically increasing sized sets from ¢ to S containing A);

denoting the number of k-sets F contains with my,

since no chain can pass through two different sets A and B of F, number of chains passing through all
the members of F is S_1_, myk!(n — k)!, whichis <nl= Y"7_ 7% <1= —L<3>7 my <1
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