Computing an approximate weighted shortest path in the plane

R. Inkulu http://www.iitg.ac.in/rinkulu/

(Joint work with Sanjiv Kapoor)

Problem description

cost of the red path is
$w_{f_{1}}\|s a\|+w_{f_{2}}\|a b\|+w_{f_{3}}\|b c\|+\min \left(w_{f_{3}}, w_{f_{4}}\right)\|c d\|+w_{f_{3}}\|d g\|+w_{f_{5}}\|g t\|$

- Given a triangulation \mathcal{P} with $O(n)$ faces, each face associated with a positive weight, find a path between two input points s and t (both belonging to \mathcal{P}) so that the path has minimum cost among all possible paths joining s and t that lie on \mathcal{P}.
- The cost of any path p is the sum of costs of all line segments in p, whereas the cost of a line segment is its Euclidean length multiplied by the weight of the face on which it lies.

Hardness of the problem

- Computing an optimal path is believed to be hard; and it is not of interest to practitioners in particular. ${ }^{1}$

[^0]
Hardness of the problem

- Computing an optimal path is believed to be hard; and it is not of interest to practitioners in particular. ${ }^{1}$

Hence, apprx algorithms are of interest; we devise a FPTAS.

[^1]
Outline

1 Literature

2 Our algorithm

3 Conclusions

(Approximate weighted shortest path)

[Mitchell, Papadimitriou JACM ’91]: characterized shortest paths in terms of Snell's laws

- If a geodesic path p shares a segment $y y^{\prime}$ with edge e, for y not being a vertex, then both the angle of incidence at y from f^{\prime} and angle of exit into f^{\prime} at y^{\prime} are critical: $\theta_{c}=\sin ^{-1}\left(\frac{w_{f^{\prime \prime}}}{w_{f^{\prime}}}\right)$. (This cases arises only when $w_{f^{\prime \prime}}<w_{f^{\prime}}$.)
- If a geodesic path p crosses edge e at a point z, then p obeys Snell's law of refraction at $z: w_{f^{\prime}} \sin _{\theta^{\prime}}=w_{f^{\prime \prime}} \sin _{\theta^{\prime \prime}}$ for $\theta^{\prime}<\theta_{c}$.
- There does not exist a least cost path whose angle of incidence is greater than θ_{c}.

[Mitchell, Papadimitriou JACM '91]: algorithm based on continuous Dijkstra

weights of all the faces are same

weights of faces are not same

[Mitchell, Papadimitriou JACM ’91]: progresses intervals of optimality

- Simulates the wavefront progress by the progression of intervals of optimality over the faces of \mathcal{P}
- each such interval s denotes one maximal subsection of an edge (wrt a face f^{\prime}) for which the shortest path to any point on s has the same discrete structure

[Lanthier et al. Algorithmica '01]: reduced to a graph-theoretic problem

- For each face f_{i} of \mathcal{P} a graph G_{i} is constructed: $\Theta\left(n^{2}\right)$ Steiner points are evently placed along each edge of f_{i}; a node pair u and v is connected in G_{i} whenever u and v belong to distinct edges of f_{i} or they are neighbors on an edge.
outputs an apprx shortest path with additive error

Variants of [Lanthier et al. Algorithmica '01]

- [Aleksandrov et al. SWAT'98]

Steiner points are placed in a geometric progression along the edge

- [Aleksandrov et al. STOC'00]

Based on Snell's laws of refraction, prunes edges through which Dijkstra's wavefront need to progress

- [Sun and Reif JAlgo '06]

Prunes further by exploiting the non-crossing property of shortest paths

- [Aleksandrov et al. JACM '05]

Steiner points are placed in a geometric progression along the three bisectors of each face

- [Cheng et al. SIAMJC ' 10, Cheng et al. SODA '15]

Prunes \mathcal{P} based on the intersection of an ellipse (whose size relies on the unweighted geodesic distance between s and t) and \mathcal{P} before applying [Aleksandrov et al. JACM '05]; handles convex distance functions

Time complexity comparison chart ${ }^{2}$

[Mitchell, Papadimitriou JACM '91]	$O\left(n^{8} \lg \frac{n N \mu}{\epsilon}\right)$
[Mata and Mitchell SoCG '97]	$O\left(\frac{\mu}{\epsilon \theta_{\min }} n^{3}\right)$
[Sun and Reif JAlgo '06]	$O\left(\frac{n N^{2}}{\epsilon} \lg (N \mu) \lg \frac{n}{\epsilon} \lg \frac{1}{\epsilon}\right)$
[Aleksandrov et al. JACM '05]	$O\left(\frac{n N^{2}}{\sqrt{\epsilon}} \lg (N \mu) \lg \frac{n}{\epsilon} \lg \frac{1}{\epsilon}\right)$
[Cheng et al. SODA '15]	$O\left(\frac{k n+k^{4} \lg (k / \epsilon)}{\epsilon} \lg ^{2} \frac{\rho n}{\epsilon}\right)$
Our result	$O\left(n^{5} \lg n+n^{4} \lg \left(\frac{\mu}{\epsilon}\left(1+\frac{1}{\sin \theta_{\min }}\right)\right)\right)$

Like [Mitchell, Papadimitriou JACM '91], our algorithm is polynomial in n.
${ }^{2} n$: number of vertices defining $\mathcal{P} ; L$: length of the longest edge bounding any face of \mathcal{P}; N : maximum coordinate value used in describing \mathcal{P}; $w_{\max }$: maximum non-infinite weight associated with any triangle; $w_{\text {min }}$: minimum weight associated with any triangle; $\theta_{\text {min }}$: minimum among the internal face angles of \mathcal{P}; and, μ : ratio of $w_{\max }$ to $w_{\text {min }} ; k$ is the smallest integer such that the sum of the k smallest angles in \mathcal{P} is at least π.

Outline

1 Literature

2 Our algorithm

3 Conclusions

Progressing wavefront: continuous Dijkstra in weighted domains

Progressing wavefront: discretized Dijkstra

- initiate many rays from s but trace only few

Tracing discrete wavefront

- initiate many rays from s but trace only few
- we upper bound the number of rays initiated and the ones that get traced for the worst-case

Events corresponding to tracing of ray bundles

event point pairs are pushed to min-heap:

$$
\begin{aligned}
& q_{1}^{\prime}-q_{1}^{\prime \prime}, \text { etc. }, \\
& q_{1}^{\prime}-q_{2}^{\prime \prime}, \text { etc. }
\end{aligned}
$$

Note that the bundle of rays are pairwise divergent.

Initiating ray bundles from a vertex

initiate a discrete wavefront from v when blue ray bundle strikes v while exploiting the non-crossing property of shortest paths

two rays belong to a ray bundle if they traverse across the same edge sequence whenever traced

successive rays r_{1}^{\prime} and $r_{1}^{\prime \prime}$ are identified with binary search over the rays in blue ray bundle

- The rays that belong to the same ray bundle, the edge sequence that they traverse across is same.

new ray bundles are formed and the corresponding sibling pairs are defined

$$
w_{f^{\prime \prime}}
$$

here the critical angle θ_{c} is $\sin ^{-1}\left(\frac{w_{f f^{\prime \prime}}}{w_{f^{\prime}}}\right)$ wherein $w_{f^{\prime \prime}}<w_{f^{\prime}}$

Initiating rays from a critical segment

number and position of points from which rays are generated is a function of ϵ

Split of a ray bundle initiated at a critical segment

- linear interpolation in finding $x^{\prime \prime}$ suffice instead of tracing rays from κ

Rays initiated from a critical source

- helps in having sparser sets of rays initiated from vertex and critical segment sources
- these rays are traced similar to the way rays initiated from a vertex source

Recap

sources of ray bundles:

Recap

sources of ray bundles:

- vertices of \mathcal{P}, including s

Recap

sources of ray bundles:

- vertices of \mathcal{P}, including s
- critical segments

Recap

sources of ray bundles:

- vertices of \mathcal{P}, including s
- critical segments
- critical sources

Recap

sources of ray bundles:

- vertices of \mathcal{P}, including s
- critical segments
- critical sources
event points of interest:
(Approximate weighted shortest path)

Recap

sources of ray bundles:

- vertices of \mathcal{P}, including s
- critical segments
- critical sources
event points of interest:
- initiating rays from sources

Recap

sources of ray bundles:

- vertices of \mathcal{P}, including s
- critical segments
- critical sources
event points of interest:
- initiating rays from sources
- tracing ray bundles

Recap

sources of ray bundles:

- vertices of \mathcal{P}, including s
- critical segments
- critical sources
event points of interest:
- initiating rays from sources
- tracing ray bundles
- ray bundle splits due to new ray bundle sources

Algorithm

(1) initiate a set of ray bundles from s
(2) while (t is not struck by a ray bundle)
(i) push new event points to min-heap
(ii) handle event points popped from min-heap

Few optimizations: tree of rays

For each vertex v,

- ray bundles from v
- ray bundles from critical sources whose nearest ancestor vertex is v are organized into a tree, $\mathcal{T}_{R}(v)$.

Few optimizations: tree of rays

For each vertex v,

- ray bundles from v
- ray bundles from critical sources whose nearest ancestor vertex is v are organized into a tree, $\mathcal{T}_{R}(v)$.

Two rays in a ray bundle are siblings whenever the edge sequence associated with one is a suffix of the edge sequence of the other; binary search for ray pairs in $T_{R}(v)$ is possible due to pairwise divergence of rays in $T_{R}(v)$.

Few more optimizations: interpolate when the angle is small

- avoid tracing rays across lengthy $\left(O\left(n^{2}\right)\right.$) edge sequence: instead interpolate when the angle between traced rays is small

Properties exploited in the analysis

- Let p be a geodesic path. Then either (i) between any two consecutive vertices on p, there is at most one critical point of entry to an edge e, and at most one critical point of exit from an edge e^{\prime} (possibly equal to e); or (ii) the path p can be modified in such a way that case (i) holds without altering the length of the path.

Properties exploited in the analysis

- Let p be a geodesic path. Then either (i) between any two consecutive vertices on p, there is at most one critical point of entry to an edge e, and at most one critical point of exit from an edge e^{\prime} (possibly equal to e); or (ii) the path p can be modified in such a way that case (i) holds without altering the length of the path.
- The length of any edge sequence of a shortest locally f-free path p to a point on the boundary of f is $O\left(n^{2}\right)$.

Properties exploited in the analysis

- Let p be a geodesic path. Then either (i) between any two consecutive vertices on p, there is at most one critical point of entry to an edge e, and at most one critical point of exit from an edge e^{\prime} (possibly equal to e); or (ii) the path p can be modified in such a way that case (i) holds without altering the length of the path.
- The length of any edge sequence of a shortest locally f-free path p to a point on the boundary of f is $O\left(n^{2}\right)$.
- Any shortest geodesic path p, passes through $O(n)$ critical points of entry on any given edge e.

Properties exploited in the analysis

- Let p be a geodesic path. Then either (i) between any two consecutive vertices on p, there is at most one critical point of entry to an edge e, and at most one critical point of exit from an edge e^{\prime} (possibly equal to e); or (ii) the path p can be modified in such a way that case (i) holds without altering the length of the path.
- The length of any edge sequence of a shortest locally f-free path p to a point on the boundary of f is $O\left(n^{2}\right)$.
- Any shortest geodesic path p, passes through $O(n)$ critical points of entry on any given edge e.
- Non-crossing property of shortest paths: Any two shortest geodesic paths with the same source point cannot intersect in the interior of any region.

Bounding the ray density at sources to obtain a PTAS

Considering refraction/reflection paths of any two successive rays initiated from any type of source, initiating $O\left(\frac{2 \mu}{\epsilon^{\prime}}\left(\frac{1}{\epsilon^{\prime}}\right)^{n^{2}}\right)$ suffice to achieve ϵ-apprximation, where $\epsilon^{\prime}=\frac{\epsilon}{n^{3} \mu\left(1+\frac{1}{\sin \theta_{\text {min }}}\right)}$.

Time complexity

Time complexity

- ray bundle splits at vertices

Time complexity

- ray bundle splits at vertices
- ray bundle splits at critical sources
- ray bundle splits at vertices
- ray bundle splits at critical sources
- number of ray bundles from vertex sources
- ray bundle splits at vertices
- ray bundle splits at critical sources
- number of ray bundles from vertex sources
- number of ray bundles from critical sources
- ray bundle splits at vertices
- ray bundle splits at critical sources
- number of ray bundles from vertex sources
- number of ray bundles from critical sources
- splits of ray bundles from critical segments
- ray bundle splits at vertices
- ray bundle splits at critical sources
- number of ray bundles from vertex sources
- number of ray bundles from critical sources
- splits of ray bundles from critical segments
- tracing ray bundles across edge sequences
- ray bundle splits at vertices
- ray bundle splits at critical sources
- number of ray bundles from vertex sources
- number of ray bundles from critical sources
- splits of ray bundles from critical segments
- tracing ray bundles across edge sequences
savings due to tree of rays and interpolations
- ray bundle splits at vertices
- ray bundle splits at critical sources
- number of ray bundles from vertex sources
- number of ray bundles from critical sources
- splits of ray bundles from critical segments
- tracing ray bundles across edge sequences savings due to tree of rays and interpolations

Takes $O\left(n^{5} \lg n+n^{4} \lg \left(\frac{\mu}{\epsilon}\left(1+\frac{1}{\sin _{\theta_{\text {min }}}}\right)\right)\right)$ time to find an ϵ-approximate shortest path from s to t.

Major ideas

Major ideas

- discrete wavefront as sets of rays

Major ideas

- discrete wavefront as sets of rays
- partitioning the wavefront into ray bundles

Major ideas

- discrete wavefront as sets of rays
- partitioning the wavefront into ray bundles
- lazy tracing of rays in ray bundles

Major ideas

- discrete wavefront as sets of rays
- partitioning the wavefront into ray bundles
- lazy tracing of rays in ray bundles
- binary search within tree of rays

Major ideas

- discrete wavefront as sets of rays
- partitioning the wavefront into ray bundles
- lazy tracing of rays in ray bundles
- binary search within tree of rays
- interpolating instead of tracing wherever it is possible

Single-source apprx shortest path queries

- Achieves constructing a least cost path in $O\left(n^{4} \lg \frac{n}{\epsilon}\right)$ query time with $O\left(n^{5}\left(\lg \frac{n}{\epsilon}\right)\left(\lg \frac{\mu}{\sqrt{\epsilon}}\right)(\lg N)\right)$ preprocessing time.
while the best polynomial query time stands at $O\left(n^{7}\right.$ polylog $)$ ([Mitchell, Papadimitriou JACM '91])

Outline

1 Literature

2 Our algorithm

3 Conclusions

Take-homes

- A generalization of well-known Euclidean shortest path problem

Take-homes

- A generalization of well-known Euclidean shortest path problem
- Continuous vs discrete-Dijkstra wavefront

Take-homes

- A generalization of well-known Euclidean shortest path problem
- Continuous vs discrete-Dijkstra wavefront
- Reducing the geometric problem to a graph-theoretic one vs solving the problem in the geometric domain itself

Open problems

- since the known worst-case lower bound on the number of event points in the continuous Dijkstra amid weighted regions is known to be $\Omega\left(n^{4}\right)$ (from [Mitchell, Papadimitriou JACM '91]), the next objective could be to design an algorithm with $O\left(n^{4}\right.$ polylog $)$ time.

Open problems

- since the known worst-case lower bound on the number of event points in the continuous Dijkstra amid weighted regions is known to be $\Omega\left(n^{4}\right)$ (from [Mitchell, Papadimitriou JACM '91]), the next objective could be to design an algorithm with $O\left(n^{4}\right.$ polylog $)$ time.
- more efficient single-source queries and two-point queries

Open problems

- since the known worst-case lower bound on the number of event points in the continuous Dijkstra amid weighted regions is known to be $\Omega\left(n^{4}\right)$ (from [Mitchell, Papadimitriou JACM '91]), the next objective could be to design an algorithm with $O\left(n^{4}\right.$ polylog $)$ time.
- more efficient single-source queries and two-point queries
- extending to polyhedral weighted surfaces

Open problems

- since the known worst-case lower bound on the number of event points in the continuous Dijkstra amid weighted regions is known to be $\Omega\left(n^{4}\right)$ (from [Mitchell, Papadimitriou JACM '91]), the next objective could be to design an algorithm with $O\left(n^{4}\right.$ polylog $)$ time.
- more efficient single-source queries and two-point queries
- extending to polyhedral weighted surfaces
- using more complicated weight functions, ex. anistropic ones

Open problems

- since the known worst-case lower bound on the number of event points in the continuous Dijkstra amid weighted regions is known to be $\Omega\left(n^{4}\right)$ (from [Mitchell, Papadimitriou JACM '91]), the next objective could be to design an algorithm with $O\left(n^{4}\right.$ polylog $)$ time.
- more efficient single-source queries and two-point queries
- extending to polyhedral weighted surfaces
- using more complicated weight functions, ex. anistropic ones
- several optimization problems in weighted regions, ex. tours, matching, transportation, routing

References: polynomial time algo

Joseph Mitchell and Christos Papadimitriou.
The weighted region problem: Finding shortest paths through a weighted planar subdivision.
Journal of the ACM, 38(1):18-73, 1991.

R. Inkulu and Sanjiv Kapoor

A polynomial time algorithm for finding an approximate shortest path amid weighted regions.
Under review.
Available at CoRR abs/1501.00340.

References

R Christian Mata and Joseph Mitchell.
A new algorithm for computing shortest paths in weighted planar subdivisions (extended abstract).
SoCG, pages 264-273, 1997.
(Ryudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack. Determining approximate shortest path on weighted polyhedral surface. Journal of the ACM, 52(1):25-53, 2005.

围 Zheng Sun and John H. Reif.
On finding approximate optimal paths in weighted regions.
Journal of Algorithms, 58(1):1-32, 2006.
S.-W. Cheng, H.-S. Na, A. Vigneron, and Y. Wang.

Querying approximate shortest paths in anisotropic regions.
SIAM Journal on Computing, 39(5):1888-1918, 2010.

Few more references

图 Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack. Approximating shortest paths on weighted polyhedral surfaces. Algorithmica, 30(4):527-562, 2001.

围 Lyudmil Aleksandrov, Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack.
An ϵ-approximation for weighted shortest paths on polyhedral surfaces SWAT, pages 11-22, 1998.
(Ryudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack. Approximation algorithms for geometric shortest path problems STOC, pages 286-295, 2000.
(ivi Siu-Wing Cheng, J. Jin, and A. Vigneron.
Triangulation Refinement and Approximate Shortest Paths in Weighted Regions.
SODA, pages 1626-1640. SIAM, 2015.

Thanks!

(Approximate weighted shortest path)

[^0]: ${ }^{1}$ In the algebraic computation model over the rational numbers, computing an optimal path amid weighted regions in \mathbb{R}^{2} is proven to be unsolvable (refer to De Carufel et al. CGTA 2014). In \mathbb{R}^{3}, even when every face weight belong to $0, \infty$, computing an optimal path amid weighted regions is proven to be NP-hard using a reduction from 3-SAT (refer to Canny and Reif, FOCS '87).
 (Approximate weighted shortest path)

[^1]: ${ }^{1}$ In the algebraic computation model over the rational numbers, computing an optimal path amid weighted regions in \mathbb{R}^{2} is proven to be unsolvable (refer to De Carufel et al. CGTA 2014). In \mathbb{R}^{3}, even when every face weight belong to $0, \infty$, computing an optimal path amid weighted regions is proven to be NP-hard using a reduction from 3-SAT (refer to Canny and Reif, FOCS '87).
 (Approximate weighted shortest path)

