- $coNP = \{L : \overline{L} \in NP\}.$
 - $L \in NP$: every yes instance of L has a polynomial length proof of $x \in L$.

 $L \in coNP$: every no instance of L has a polynomial length refutation of $x \in L$.

- For example, \overline{SAT} , $\overline{HAMPATH}$, and TAUTOLOGY are in class coNP.
- $P \subseteq NP \cap coNP$.
- FACTORING = $\{ < n, a, b > | n, a, b \text{ are positive integers in binary and there exists a prime number } p \in [a, b]$ that divides $n \} \in NP \cap coNP$.
- PRIMES = $\{n \mid \text{positive integer } n \text{ is a prime number}\} \in NP \cap coNP$, and PRIMES was proven to be in class P.
- If P = NP then NP = coNP.
- $coNP \subseteq PSPACE$.
- $L \in \text{NP-hard} \Rightarrow \overline{L} \in \text{coNP-hard}.$
- TAUTOLOGY = { ϕ : ϕ is a boolean formula that is satisfied by every truth assignment} is coNP-complete.
- If an NP-complete language is in coNP, then NP = coNP.