• We proved the following in previous lectures -

 L_d is not a TRL, $\overline{L_d}$ is an undecidable TRL

 L_u is an undecidable TRL.

since L_u is an undecidable TRL, $\overline{L_u}$ is not a TRL

• $L_u \leq_m L_{halt}$

 $f(\langle M, w \rangle) = \langle M', w \rangle$, where M' is same as M except that M' loops when M reaches reject state hence, L_{halt} is undecidable

however, we proved that L_{halt} is a TRL via constructing a UTM

since L_{halt} is an undecidable TRL, $\overline{L_{halt}}$ is not a TRL

• $L_u \leq_m L_{equal}$

 $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$, where

 M_1 : on input w' accept w'

 M_2 : on input w'', if M accepts w, accept w''

hence, L_{equal} is undecidable

• $L_u \leq_m L_{regular}$

f(< M, w >) = < M' >, where

M': on input w'

if $w' \in \{0^i 1^i | i \ge 0\}$ accept w'

else if M accepts w accept w'

hence, $L_{regular}$ is undecidable

• $\overline{L_u} \leq_m L_{finite}$

f(< M, w>) = < M'>, where

M': on input w'

if M accepts w accept w'

f(< M, w >) = < M' >, where

hence, L_{finite} is not a TRL

• $\overline{L_u} \leq_m L_{empty}$

M': on input w'

- if M accepts w accept w'
- hence, L_{empty} is not a TRL
- $L_{empty} \leq_m L_{equal}$
 - $f(< M >) = < M, M^\prime >,$ where
 - M': on input w'

reject w'

hence, L_{equal} is not a TRL

since L_u ≤_m L_{equal} (see above), L_u ≤_m L_{equal}
hence, L_{equal} is not a TRL