- every partial recursive function is Turing computable -
- DTMs can compute basic functions: successor, zero, projection
- proved that composition of functions can be implemented in DTMs
- if f is defined by primitive recursion from Turing computable functions g and h, then we proved f is Turing computable as well
- unbounded minimalization of a Turing computable total predicate $p\left(x_{1}, \ldots, x_{n}, y\right)$ is Turing computable: to solve $f\left(x_{1}, \ldots, x_{n}\right)=\mu z\left[p\left(x_{1}, \ldots, x_{n}, z\right)\right]$, successively substitute $z=0,1, \ldots$; computation terminates when the first z for which $p\left(x_{1}, \ldots, x_{n}, z\right)=1$, with the value of z written on tape
— every Turing computable function is partial recursive -

[ctc (resp. ntc): Godel number representing nonblank part of the current tape (resp. tape updated); chp (resp. nhp): numerical representation of current (resp. updated) tape head location; cts (resp. nts): numerical representation of symbol in tape cell pointed by chp (resp. nhp); cs (resp. ns): numerical representation of current state (resp. new state)]
- assign a unique natural number to each element of Γ, Q
- encode every configuration into a Godel number $\sqrt{[1}: g=g n(\mathrm{cs}, \mathrm{chp}, \mathrm{ctc})$
it is immediate note
cs $=\operatorname{decode}(0, \mathrm{~g}) ;$ chp $=\operatorname{decode}(1, \mathrm{~g}) ; \operatorname{cts}=\operatorname{decode}(\operatorname{decode}(1, \mathrm{~g}), \operatorname{decode}(2, \mathrm{~g}))^{2}$
- suppose $\delta(q, \alpha)=\left(q^{\prime}, \alpha^{\prime}, L\right), \delta(q, \beta)=\left(q^{\prime \prime}, \beta^{\prime}, R\right)$ be the only transitions from q, then $n s=e q(c t s, \alpha) \cdot q^{\prime}+e q(c t s, \beta) \cdot q^{\prime \prime}+n e(c t s, \alpha) \cdot n e(c t s, \beta) \cdot c s$
corresponding to $\delta(q, \alpha)=\left(q^{\prime}, \alpha^{\prime}, L\right)$,
$n t c=q u o\left(c t c\right.$, primenum $\left.(c h p)^{c t s+1}\right) \cdot$ primenum $(c h p)^{n t s+1}$, where nts is numerical representation of α^{\prime}
$n h p=e q(c s, q) \cdot e q(c t s, \alpha) \cdot(c h p-1)+e q(c s, q) \cdot e q(c t s, \beta) \cdot(c h p+1)+n e(c s, q) \cdot n e(c t s, \alpha) \cdot n e(c t s, \beta) \cdot c h p$ (assuming these are the only transitions present)

[^0]- initial configuration with tape having string w: config $(0)=g n\left(0,0, \Pi_{i=1}^{|w|} \operatorname{primenum}(i)^{w[i]+1}\right)$ subsequent configurations: $\operatorname{config}(y+1)=g n(n s(\operatorname{config}(y)), \operatorname{nhp}(\operatorname{config}(y)), n t c(\operatorname{config}(y)))$ computation terminates after it undergoes $\mu z[\operatorname{eq}(\operatorname{config}(z)$, config $(z+1))]$ number of transitions

[^0]: ${ }^{1} g n\left(x_{0}, \ldots, x_{n}\right)=\Pi_{i=0}^{n} \operatorname{primenum}(i)^{x_{i}+1}$
 ${ }^{2} \operatorname{decode}(i, x)=\mu^{x} z\left[\operatorname{complsgn}\left(\operatorname{divides}\left(x, \operatorname{primenum}(i)^{z+1}\right)\right)\right]-1$

