
Functions computed by TMs R. Inkulu

— every partial recursive function is Turing computable —

• DTMs can compute basic functions: successor, zero, projection

• proved that composition of functions can be implemented in DTMs

• if f is defined by primitive recursion from Turing computable functions g and h, then we proved f is
Turing computable as well

• unbounded minimalization of a Turing computable total predicate p(x1, . . . , xn, y) is Turing com-
putable: to solve f(x1, . . . , xn) = µz[p(x1, . . . , xn, z)], successively substitute z = 0, 1, . . .; com-
putation terminates when the first z for which p(x1, . . . , xn, z) = 1, with the value of z written on
tape

— every Turing computable function is partial recursive —

c
t
s

ctc

chp

cs

ns

ntc

nhpnts

[ctc (resp. ntc): Godel number representing nonblank part of the current tape (resp. tape updated); chp (resp. nhp): numerical representation

of current (resp. updated) tape head location; cts (resp. nts): numerical representation of symbol in tape cell pointed by chp (resp. nhp); cs (resp.

ns): numerical representation of current state (resp. new state)]

• assign a unique natural number to each element of Γ, Q

• encode every configuration into a Godel number1 : g = gn(cs, chp, ctc)

it is immediate note
cs = decode(0, g); chp = decode(1, g); cts = decode(decode(1, g), decode(2, g)) 2

• suppose δ(q, α) = (q′, α′, L), δ(q, β) = (q′′, β′, R) be the only transitions from q, then
ns = eq(cts, α).q′ + eq(cts, β).q′′ + ne(cts, α).ne(cts, β).cs

corresponding to δ(q, α) = (q′, α′, L),
ntc = quo(ctc, primenum(chp)cts+1).primenum(chp)nts+1, where nts is numerical representation
of α′

nhp = eq(cs, q).eq(cts, α).(chp−1)+eq(cs, q).eq(cts, β).(chp+1)+ne(cs, q).ne(cts, α).ne(cts, β).chp
(assuming these are the only transitions present)

1gn(x0, . . . , xn) = Πn
i=0primenum(i)xi+1

2decode(i, x) = µxz[complsgn(divides(x, primenum(i)z+1))]− 1

1

http://www.iitg.ac.in/rinkulu/

• initial configuration with tape having string w: config(0) = gn(0, 0,Π
|w|
i=1primenum(i)w[i]+1)

subsequent configurations: config(y + 1) = gn(ns(config(y)), nhp(config(y)), ntc(config(y)))

computation terminates after it undergoes µz[eq(config(z), config(z + 1))] number of transitions

2

