- computing functions with DTMs: every computation terminates in a unique final state; leaves tape head at the leftmost cell; typically, initial state is never reentered
concatenating two input strings separated by a blank, each with alphabet $\{a, b\}$
given an integer j in unary, compute $3 j$ with a modular design -
- modules correspond to - replace last 1 with \# (let the resulting string be w); $w \# w$ while leaving tape head at first cell; move to \# on the right; $w \# w \# w$ while leaving tape head at first $\# ; w \# w w$ while leaving tape head at first \#; move tape head to first cell; www while leaving tape head at first cell
- NTM example: $L=$ \{positive integer r in unary $\mid r$ is composite $\}$
input is 1^{r+1}; non-deterministically choose two positive integers, say p and q (refer to automata below); with tape containing $1^{r+1} \# 1^{p+1} \# 1^{q+1}$; make sure $p<r$ and $q<r$; multiply p and q so that the input has $1^{r+1} \# 1^{p+q+1}$; compare 1^{r+1} with 1^{p+q+1} and accept if they are same; otherwise reject

- with respect to the power of recognizing a language, it is obvious that,

however, shortly, we will establish $D F A=N F A<P D A<D T M=N T M$

