Multivariable problem with equality and inequality constraints

Rajib Bhattacharjya
Department of Civil Engineering
IIT Guwahati
Email: rkbc@iitg.ernet.in

General formulation

Min/Max	$f(X)$	Where $X=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]^{T}$
Subject to	$g_{j}(X)=0$	$j=1,2,3, \ldots, m$

This is the minimum point of the function
Now this is not the minimum point of the constrained function

This is the new minimum point

Consider a two variable problem

Min/Max $\quad f\left(x_{1}, x_{2}\right)$
Subject to $\quad g\left(x_{1}, x_{2}\right)=0$

Rajib Bhattacharjya, IITG

Take total derivative of the function at $\left(x_{1}, x_{2}\right)$
$d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}=0$
If $\left(x_{1}, x_{2}\right)$ is the solution of the constrained problem, then

$$
g\left(x_{1}, x_{2}\right)=0
$$

Now any variation $d x_{1}$ and $d x_{2}$ is admissible only when

$$
g\left(x_{1}+d x_{1}, x_{2}+d x_{2}\right)=0
$$

Consider a two variable problem

Consider a two variable problem

Min/Max $\quad f\left(x_{1}, x_{2}\right)$
Subject to $\quad g\left(x_{1}, x_{2}\right)=0$

Rajib Bhattacharjya, IITG
$d x_{2}=-\frac{\frac{\partial g}{\partial x_{1}}}{\frac{\partial g}{\partial x_{2}}} d x_{1}$
Putting in $\quad d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}=0$
$d f=\frac{\partial f}{\partial x_{1}} d x_{1}-\frac{\partial f}{\partial x_{2}} \frac{\frac{\partial g}{\partial x_{1}}}{\frac{\partial g}{\partial x_{2}}} d x_{1}=0$
$\left(\frac{\partial f}{\partial x_{1}} \frac{\partial g}{\partial x_{2}}-\frac{\partial f}{\partial x_{2}} \frac{\partial g}{\partial x_{1}}\right) d x_{1}=0$
$\left(\frac{\partial f}{\partial x_{1}} \frac{\partial g}{\partial x_{2}}-\frac{\partial f}{\partial x_{2}} \frac{\partial g}{\partial x_{1}}\right)=0$
This is the necessary condition for optimality for optimization problem with equality constraints

Lagrange Multipliers

Min/Max $\quad f\left(x_{1}, x_{2}\right)$
Subject to $\quad g\left(x_{1}, x_{2}\right)=0$
We have already obtained the condition that
$\frac{\partial f}{\partial x_{1}}-\frac{\partial f}{\partial x_{2}} \frac{\frac{\partial g}{\partial x_{1}}}{\partial x_{2}}=0 \quad \square \frac{\partial f}{\partial x_{1}}-\left(\frac{\frac{\partial f}{\partial x_{2}}}{\frac{\partial g}{\partial x_{2}}}\right) \frac{\partial g}{\partial x_{1}}=0$
$\begin{array}{ccl}\text { By defining } & \lambda=-\frac{\partial f}{\partial x_{2}} \\ \frac{\partial g}{\partial x_{2}}\end{array} \quad \begin{aligned} & \text { We have } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { Write can also } \\ & \text { Also put }\end{aligned} \begin{aligned} & \frac{\partial f}{\partial x_{1}}+\lambda \frac{\partial g}{\partial x_{1}}=0 \\ & \end{aligned}$

Lagrange Multipliers

Let us define

$$
L\left(x_{1}, x_{2}, \lambda\right)=f\left(x_{1}, x_{2}\right)+\lambda g\left(x_{1}, x_{2}\right)
$$

By applying necessary condition of optimality, we can obtain

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=\frac{\partial f}{\partial x_{1}}+\lambda \frac{\partial g}{\partial x_{1}}=0 \\
& \frac{\partial L}{\partial x_{2}}=\frac{\partial f}{\partial x_{2}}+\lambda \frac{\partial g}{\partial x_{2}}=0 \\
& \frac{\partial L}{\partial \lambda}=g\left(x_{1}, x_{2}\right)=0
\end{aligned}
$$

Lagrange Multipliers

Sufficient condition for optimality of the Lagrange function can be written as

$$
\begin{aligned}
& L\left(x_{1}, x_{2}, \lambda\right)=f\left(x_{1}, x_{2}\right)+\lambda g\left(x_{1}, x_{2}\right) \\
& H=\left[\begin{array}{ccc}
\frac{\partial^{2} L}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} L}{\partial x_{1} \partial \lambda} \\
\frac{\partial^{2} L}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{2} \partial x_{2}} & \frac{\partial^{2} L}{\partial x_{2} \partial \lambda} \\
\frac{\partial^{2} L}{\partial \lambda \partial x_{1}} & \frac{\partial^{2} L}{\partial \lambda \partial x_{2}} & \frac{\partial^{2} L}{\partial \lambda \partial \lambda}
\end{array}\right]
\end{aligned} \quad H=\left[\begin{array}{ccc}
\frac{\partial^{2} L}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{1} \partial x_{2}} & \frac{\partial g}{\partial x_{1}} \\
\frac{\partial^{2} L}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{2} \partial x_{2}} & \frac{\partial g}{\partial x_{2}} \\
\frac{\partial g}{\partial x_{1}} & \frac{\partial g}{\partial x_{2}} & 0
\end{array}\right] .
$$

If H is positive definite, the optimal solution is a minimum point If H is negative definite, the optimal solution is a maximum point
Else it is neither minima nor maxima

Lagrange Multipliers

Necessary conditions for general problem
$\operatorname{Min} / \operatorname{Max} \quad f(X) \quad$ Where $X=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]^{T}$
Subject to

$$
g_{j}(X)=0 \quad j=1,2,3, \ldots, m
$$

$L\left(x_{1}, x_{2}, \ldots, x_{n}, \lambda_{1}, \lambda_{2}, \lambda_{3} \ldots, \lambda_{m}\right)=f(X)+\lambda_{1} g_{1}(X)+\lambda_{2} g_{2}(X), \ldots, \lambda_{m} g_{m}(X)$
Necessary conditions

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}+\sum_{j=1}^{m} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}}=0 \\
& \frac{\partial L}{\partial \lambda_{j}}=g_{j}(X)=0
\end{aligned}
$$

Lagrange Multipliers

Sufficient condition for general problem

The hessian matrix is
Where,

$$
H=\left[\begin{array}{ccccccccc}
L_{11} & L_{12} & L_{13} & \ldots & L_{1 n} & g_{11} & g_{21} & \ldots & g_{m 1} \\
L_{21} & L_{22} & L_{23} & \ldots & L_{2 n} & g_{12} & g_{22} & \ldots & g_{m 2} \\
\vdots & \vdots \\
L_{n 1} & L_{n 2} & L_{n 3} & \ldots & L_{n n} & g_{1 n} & g_{1 n} & \ldots & g_{m n} \\
g_{11} & g_{12} & g_{13} & \ldots & g_{1 n} & 0 & 0 & \ldots & 0 \\
g_{21} & g_{22} & g_{23} & \vdots & g_{2 n} & \vdots & \vdots & \vdots & \vdots \\
g_{31} & g_{32} & g_{33} & \ldots & g_{3 n} & 0 & \cdots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \ldots & \ldots & \ldots \\
g_{m 1} & g_{m 2} & g_{m 3} & \ldots & g_{2 n} & 0 & \ldots & \ldots & 0
\end{array}\right] \quad L_{i j}=\frac{\partial^{2} L}{\partial x_{i} \partial x_{j}}
$$

Lagrange Multipliers

Min/Max $\quad f(X) \quad$ Where $X=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]^{T}$
Further $\quad d b-d g=0$

Subject to $\quad g(X)=b$ Or, $\quad b-g(X)=0$

$$
d b=d g=\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} d x_{i}
$$

Applying necessary conditions

Multivariable problem with inequality constraints

Minimize $\quad f(X) \quad$ Where $X=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]^{T}$

Subject to $\quad g_{j}(X) \leq 0 \quad j=1,2,3, \ldots, m$

We can write $\quad g_{j}(X)+y_{j}^{2}=0$

Thus the problem can be written as
Minimize $\quad f(X)$
Subject to $\quad G_{j}(X, Y)=g_{j}(X)+y_{j}^{2}=0 \quad j=1,2,3, \ldots, m$

Where $\mathrm{Y}=\left[y_{1}, y_{2}, y_{3}, \ldots, y_{m}\right]^{T}$

Multivariable problem with inequality constraints

Minimize $\quad f(X) \quad$ Where $X=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]^{T}$

Subject to

$$
G_{j}(X, Y)=g_{j}(X)+y_{j}^{2}=0 \quad j=1,2,3, \ldots, m
$$

The Lagrange function can be written as

$$
L(X, Y, \lambda)=f(X)+\sum_{j=1}^{m} \lambda_{j} G_{j}(X, Y)
$$

The necessary conditions of optimality can be written as

$$
\begin{array}{ll}
\frac{\partial L(X, Y, \lambda)}{\partial x_{i}}=\frac{\partial f(X)}{\partial x_{i}}+\sum_{j=1}^{m} \lambda_{j} \frac{\partial g_{j}(X)}{\partial x_{i}}=0 & i=1,2,3, \ldots, n \\
\frac{\partial L(X, Y, \lambda)}{\partial \lambda_{j}}=G_{j}(X, Y)=g_{j}(X)+y_{j}^{2}=0 & j=1,2,3, \ldots, m \\
\frac{\partial L(X, Y, \lambda)}{\partial y_{j}}=2 \lambda_{j} y_{j}=0 & j=1,2,3, \ldots, m
\end{array}
$$

Multivariable problem with inequality constraints
From equation $\quad \frac{\partial L(X, Y, \lambda)}{\partial y_{j}}=2 \lambda_{j} y_{j}=0$
Either $\quad \lambda_{j}=0 \quad$ Or, $y_{j}=0$

If $\lambda_{j}=0$, the constraint is not active, hence can be ignored
If $y_{j}=0$, the constraint is active, hence have to consider
Now, consider all the active constraints, Say set J_{1} is the active constraints
And set J_{2} is the active constraints
The optimality condition can be written as

$$
\begin{array}{ll}
\frac{\partial f(X)}{\partial x_{i}}+\sum_{j \in J_{1}} \lambda_{j} \frac{\partial g_{j}(X)}{\partial x_{i}}=0 & i=1,2,3, \ldots, n \\
g_{j}(X)=0 & j \in J_{1} \\
g_{j}(X)+y_{j}^{2}=0 & j \in J_{2}
\end{array}
$$

Multivariable problem with inequality constraints

$$
\begin{aligned}
& -\frac{\partial f}{\partial x_{i}}=\lambda_{1} \frac{\partial g_{1}}{\partial x_{i}}+\lambda_{2} \frac{\partial g_{2}}{\partial x_{i}}+\lambda_{3} \frac{\partial g_{3}}{\partial x_{i}}+\cdots+\lambda_{p} \frac{\partial g_{p}}{\partial x_{i}} \\
& -\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}+\lambda_{3} \nabla g_{3}+\cdots+\lambda_{m} \nabla g_{m}
\end{aligned}
$$

This indicates that negative of the gradient of the objective function can be expressed as a linear combination of the gradients of the active constraints at optimal point.

$$
i=1,2,3, \ldots, n
$$

$$
\nabla f=\left\{\begin{array}{c}
\partial f / \partial x_{1} \\
\partial f / \partial x_{2} \\
\vdots \\
\partial f / \partial x_{n}
\end{array}\right\}
$$

$$
\nabla g_{j}=\left\{\begin{array}{c}
\partial g_{j} / \partial x_{1} \\
\partial g_{j} / \partial x_{2} \\
\vdots \\
\partial g_{j} / \partial x_{n}
\end{array}\right\}
$$

$$
-\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}
$$

Let S be a feasible direction, then we can write

$$
-S^{T} \nabla f=\lambda_{1} S^{T} \nabla g_{1}+\lambda_{2} S^{T} \nabla g_{2}
$$

Since S is a feasible direction

$$
S^{T} \nabla g_{1}<0 \text { and } S^{T} \nabla g_{2}<0
$$

If $\lambda_{1}, \lambda_{2}>0$
Then the term $S^{T} \nabla f$ is +ve
This indicates that S is a direction of increasing function value

Thus we can conclude that if $\lambda_{1}, \lambda_{2}>0$, we will not get any better solution than the current solution

Multivariable problem with inequality constraints
The necessary conditions to be satisfied at constrained minimum points X^{*} are

$$
\begin{array}{cc}
\frac{\partial f(X)}{\partial x_{i}}+\sum_{j \in J_{1}} \lambda_{j} \frac{\partial g_{j}(X)}{\partial x_{i}}=0 & i=1,2,3, \ldots, n \\
\lambda_{j} \geq 0 & j \in J_{1}
\end{array}
$$

These conditions are called Kuhn-Tucker conditions, the necessary conditions to be satisfied at a relative minimum of $f(X)$.

These conditions are in general not sufficient to ensure a relative minimum, However, in case of a convex problem, these conditions are the necessary and sufficient conditions for global minimum.

Multivariable problem with inequality constraints

If the set of active constraints are not known, the Kuhn-Tucker conditions can be stated as

$$
\left.\begin{array}{rl}
\frac{\partial f(X)}{\partial x_{i}}+\sum_{j=1}^{m} \lambda_{j} \frac{\partial g_{j}(X)}{\partial x_{i}}=0 \quad i=1,2,3, \ldots, n \\
\lambda_{j} g_{j} & =0 \\
g_{j} \leq 0 \\
\lambda_{j} \geq 0
\end{array}\right] \quad j=1,2,3, \ldots, m
$$

Multivariable problem with equality and inequality constraints

For the problem

Minimize	$f(X)$	Where $X=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]^{T}$
Subject to	$g_{j}(X)=0$	$j=1,2,3, \ldots, m$
	$k_{k}(X)=0$	$k=1,2,3, \ldots, p$

The Kuhn-Tucker conditions can be written as

$$
\frac{\partial f(X)}{\partial x_{i}}+\sum_{j=1}^{m} \lambda_{j} \frac{\partial g_{j}(X)}{\partial x_{i}}+\sum_{k=1}^{p} \beta_{k} \frac{\partial h_{k}(X)}{\partial x_{i}}=0 \quad i=1,2,3, \ldots, n
$$

$$
\begin{aligned}
\lambda_{j} g_{j} & =0 \\
g_{j} & \leq 0 \\
h_{k} & =0 \\
\lambda_{j} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& j=1,2,3, \ldots, m \\
& j=1,2,3, \ldots, m \\
& k=1,2,3, \ldots, p \\
& j=1,2,3, \ldots, m
\end{aligned}
$$

Thanks for your attention

