Multivariable problem

Rajib Kumar Bhattacharjya Department of Civil Engineering Indian Institute of Technology Guwahati

Descent direction

A search direction d^t is a descent direction at point x^t if the condition $\nabla f(x^t) \cdot d^t < 0$ is satisfied in the vicinity of the point x^t .

$$f(x^{t+1}) = f(x^t + \alpha d^t)$$

= $f(x^t) + \alpha \nabla^T f(x^t). d^t$
The $f(x^{t+1}) < f(x^t)$

When $\alpha \nabla^T f(x^t) \cdot d^t < 0$ Or, $\nabla^T f(x^t) \cdot d^t < 0$ Q. Show that the Newton's method finds the minimum of a quadratic function in one iteration

A quadratic function can be written as

$$f(X) = \frac{1}{2}X^T A X + B^T X + C$$

The minimum of the function is given by

$$\nabla f(X) = AX + B = 0$$

 $\mathbf{X} = -A^{-1}B$

R.K.Bhattacha Now apply Newton's method. The iterative step gives

$$\mathbf{X}_{i+1} = \mathbf{X}_i - H^{-1} \nabla f(\mathbf{X}_i)$$

In this case H = A

$$X_{i+1} = X_i - A^{-1}(AX_i + B)$$
$$X_{i+1} = -A^{-1}B$$

 $\frac{\partial (X^T A X)}{\partial X} = A X + A^T X$ In this case $A = A^T$ $\frac{\partial (X^T A X)}{\partial X} = 2AX$ $\frac{\partial (AX)}{\partial X} = A^T$ $\frac{\partial (X^T A)}{\partial X} = A$ $\frac{\partial (A^T X)}{\partial X} = A$

Powell's conjugate direction method

Parallel subspace property

Given a quadratic function $f(X) = \frac{1}{2}X^TAX + B^TX + C$ of two variables and X^1 vari. K. Bhattacha and X^2 are the two arbitrary but distinct points.

If Y^1 is the solution of the problem $\begin{array}{l} \text{Min } f(X^1 + \lambda d) \\ \text{If } Y^2 \text{ is the solution of the problem} \\ \text{Min } f(X^2 + \lambda d) \end{array}$

Then the direction $(Y^2 - Y^1)$ is conjugate to d, or other words, the quantity

$$(Y^2 - Y^1)^T A d = 0$$

For quadratic function minimum lies on the direction $(Y^2 - Y^1)$

