# Multivariable problem 

Rajib Kumar Bhattacharjya<br>Department of Civil Engineering<br>Indian Institute of Technology Guwahati







## Descent direction

A search direction $d^{t}$ is a descent direction at point $x^{t}$ if the condition $\nabla f\left(x^{t}\right) \cdot d^{t}<0$ is satisfied in the vicinity of the point $x^{t}$.

$$
\begin{aligned}
& \begin{aligned}
& f\left(x^{t+1}\right)=f\left(x^{t}+\alpha d^{t}\right) \\
&=f\left(x^{t}\right)+\alpha \nabla^{T} f\left(x^{t}\right) \cdot d^{t} \\
& \text { The } f\left(x^{t+1}\right)<f\left(x^{t}\right)
\end{aligned} \\
& \text { When } \alpha \nabla^{T} f\left(x^{t}\right) \cdot d^{t}<0 \\
& \text { Or, } \quad \nabla^{T} f\left(x^{t}\right) \cdot d^{t}<0
\end{aligned}
$$

Q. Show that the Newton's method finds the minimum of a quadratic function in one iteration

A quadratic function can be written as

$$
f(X)=\frac{1}{2} X^{T} A X+B^{T} X+C
$$

The minimum of the function is given by

$$
\begin{aligned}
& \nabla f(X)=A X+B=0 \\
& X=-A^{-1} B
\end{aligned}
$$

Now apply Newton's method. The iterative step gives

$$
\mathrm{X}_{i+1}=\mathrm{X}_{i}-H^{-1} \nabla f\left(\mathrm{X}_{i}\right)
$$

In this case $H=A$

$$
\begin{aligned}
& \mathrm{X}_{i+1}=\mathrm{X}_{i}-A^{-1}\left(A \mathrm{X}_{i}+B\right) \\
& \mathrm{X}_{i+1}=-A^{-1} B
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial\left(X^{T} A X\right)}{\partial X}=A X+A^{T} X \\
& \text { In this case } A=A^{T} \\
& \frac{\partial\left(X^{T} A X\right)}{\partial X}=2 A X \\
& \frac{\partial(A X)}{\partial X}=A^{T} \\
& \frac{\partial\left(X^{T} A\right)}{\partial X}=A \\
& \frac{\partial\left(A^{T} X\right)}{\partial X}=A
\end{aligned}
$$

Powell's conjugate direction method

Parallel subspace property

Given a quadratic function $f(X)=\frac{1}{2} X^{T} A X+B^{T} X+C$ of two variables and $X^{1}$ and $X^{2}$ are the two arbitrary but distinct points.

If $Y^{1}$ is the solution of the problem

$$
\operatorname{Min} f\left(X^{1}+\lambda d\right)
$$

If $Y^{2}$ is the solution of the problem

$$
\operatorname{Min} f\left(X^{2}+\lambda d\right)
$$

Then the direction $\left(Y^{2}-Y^{1}\right)$ is conjugate to $d$, or other words, the quantity

$$
\left(Y^{2}-Y^{1}\right)^{T} A d=0
$$

For quadratic function minimum lies on the direction $\left(Y^{2}-Y^{1}\right)$


