Region Elimination Method

Rajib Kumar Bhattacharjya
Department of Civil Engineering Indian Institute of Technology Guwahati

$$
\text { if } f\left(X_{1}\right)>f\left(X_{2}\right)
$$

$$
\begin{aligned}
& \text { if } f\left(X_{1}\right)>f\left(X_{2}\right) \\
& \text { if } f\left(X_{2}\right)>f\left(X_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } f\left(X_{1}\right)>f\left(X_{2}\right) \\
& \text { if } f\left(X_{2}\right)>f\left(X_{1}\right) \\
& \text { if } f\left(X_{2}\right)=f\left(X_{1}\right)
\end{aligned}
$$

Interval halving method

Interval halving method

$$
\text { if } f\left(X_{2}\right)<f\left(X_{m}\right)
$$

Interval halving method

Interval halving method

Interval halving method

Golden Section Search Method

Golden Section Search Method

Golden Section Search Method

Continue iteration

Newton-Raphson method

$$
\uparrow \quad f^{\prime}\left(x_{n}\right)=\frac{f\left(x_{n}\right)-f\left(x_{n+1}\right)}{x_{n}-x_{n+1}}
$$

Rearranging and putting $f\left(x_{n+1}\right)=0$

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton-Raphson method

Incase optimization problem, $\quad f^{\prime}(x)=0$

$$
\begin{aligned}
& \text { Considering } F(x)=f^{\prime}(x) \\
& x_{n+1}=x_{n}-\frac{F\left(x_{n}\right)}{F^{\prime}\left(x_{n}\right)} \\
& x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)}
\end{aligned}
$$

QUIZ

1. If $f(x)$ is an unimodal convex function in the interval $[a, b]$, then $f^{\prime}(a) \times f^{\prime}(b)$ is
a) Positive
b) Negative
c) It may be negative or may be positive
d) None of the above
2. For the same function, take any point c between $[a, b]$. If $f^{\prime}(c)$ is less than 0 , then minima does not lie in
a) $[a, c]$
b) $[c, b]$
c) $[a, b]$
d) None of the above
3. For the same function, take any point c between $[a, b]$. If $f^{\prime}(c)$ is greater than 0 , then minima does not lie in
a) $[a, c]$
b) $[c, b]$
c) $[a, b]$
d) None of the above

Bisection method

> Magnitude of the derivatives is considered

