Region Elimination Method

Rajib Kumar Bhattacharjya

Department of Civil Engineering

Indian Institute of Technology Guwahati

if
$$f(X_1) > f(X_2)$$

if
$$f(X_1) > f(X_2)$$

if
$$f(X_2) > f(X_1)$$

$$if f(X_1) > f(X_2)$$

if
$$f(X_2) > f(X_1)$$

$$if \ f(X_2) = f(X_1)$$

 $if f(X_2) < f(X_m)$

Golden Section Search Method

Golden Section Search Method

Golden Section Search Method

Newton-Raphson method

Newton-Raphson method

Incase optimization problem, f'(x) = 0

Considering F(x) = f'(x)

$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)}$$

QUIZ

- 1. If f(x) is an unimodal convex function in the interval [a,b], then $f'(a) \times f'(b)$ is
- a) Positive
- b) Negative
- c) It may be negative or may be positive
- d) None of the above
- 2. For the same function, take any point c between [a,b]. If f'(c) is less than 0, then minima does not lie in
- a) [a, c]
- b) [*c*, *b*]
- c) [a, b]
- d) None of the above
- 2. For the same function, take any point c between [a,b]. If f'(c) is greater than 0, then minima does not lie in
- a) [a, c]
- b) [c,b]
- c) [a, b]
- d) None of the above

Bisection method

Take a point
$$z = \frac{a+b}{2}$$

Disadvantage

Magnitude of the derivatives is considered

