(1) Considering whole truss, taking moment about C (assuming clockwise +ve)

A section is considered between E and D

Taking moment about B (assuming clockwise +ve)

$$\sum M_B = 0; V_A(3) + F_{ED}(3) = 0$$

This gives $F_{ED} = -1 N (C)$

Taking moment about D (assuming clockwise +ve)

$$\Sigma M_D = 0; V_A(6) - F_{BC}(3) = 0$$

This gives $F_{BC} = 2 N (T)$ For vertical equilibrium

$$\Sigma F_V = 0; V_A + F_{BD} \sin 45^\circ = 0$$

This gives $F_{BD} = -\sqrt{2} N(C)$

$$\overline{BA} = BA \frac{-i-3j-6k}{\sqrt{1^2+3^3+6^2}} = BA \frac{-i-3j-6k}{\sqrt{46}}$$
$$\overline{CA} = CA \frac{2i-6k}{\sqrt{2^2+6^2}} = CA \frac{2i-6k}{\sqrt{40}}$$
$$\overline{DA} = DA \frac{-i+3j-6k}{\sqrt{1^2+3^26^2}} = DA \frac{-i+3j-6k}{\sqrt{46}}$$

 $\sum F_A = 0$ which gives $\overline{BA} + \overline{CA} + \overline{DA} - 5(\cos 30^\circ i + \sin 30^\circ j) = 0$

Equating coefficient of i, j and k to the right hand

$$-\frac{1}{\sqrt{46}}BA + \frac{2}{\sqrt{40}}CA - \frac{1}{\sqrt{46}}DA = 0$$
$$-\frac{3}{\sqrt{46}}BA + \frac{3}{\sqrt{46}}DA - \frac{1}{2}5 = 0$$
$$-\frac{6}{\sqrt{46}}BA - \frac{6}{\sqrt{40}}CA - \frac{6}{\sqrt{46}}DA - 5\frac{\sqrt{3}}{2} = 0$$

 $\begin{array}{rl} BA = & -4.46 \text{ kN} \\ \text{Solving this three equation} & CA = -1.521 \text{ kN} \\ DA = & 1.194 \text{ kN} \end{array}$

(3)

$$\mathcal{F}_{oint} \neq \mathcal{A}$$

$$\theta = \tan^{-1} \frac{1}{2} = 26.57^{\circ} \quad \sin \theta = \frac{1}{\sqrt{5}} \quad \cos \theta = \frac{2}{\sqrt{5}}$$

$$\sum F_y = 0; \quad \frac{AG}{\sqrt{5}} - 4 = 0; \quad AG = 4\sqrt{5} \text{ kN (Compression)}$$

$$\sum F_x = 0; \quad AB - 4\sqrt{5} \left(\frac{2}{\sqrt{5}}\right) = 0; \quad AB = 8 \text{ kN (Tension)}$$

From joint B, $\sum F_x = 0$; BC = 8 kN (Tension) $\sum F_y = 0$; BG = 2 kN (Compression) From joint G, $\sum F'_y = 0$; $2\left(\frac{2}{\sqrt{5}}\right) - CG \sin 2\theta = 0$; CG = 2.24 kN (Tension) $\sum F_{x'} = 0$; 2.24 cos $2\theta + \frac{2}{\sqrt{5}} + \frac{4}{\sqrt{5}} - GF = 0$; GF = 11.18 kN (Compression) $\frac{2 \kappa N}{2 \cdot 2 k \kappa N} c_F$

From joint C, $\Sigma F_y = 0$; CF - 2.24 sin $\theta = 0$; CF = 1.0 kN (Compression) $\Sigma F_x = 0$; CD - 2 - 2.24 cos $\theta = 0$; CD = 4.0 kN (Tension)

(4) Considering entire truss, reactions at A and B are

$$A = B = 3L$$

Considering section between ED, and taking moment about D (assuming anti-clockwise positive)

 $\sum M_D = 0$; FG(1) + L(1.2 + 2.4) - 3L(2.4) = 0; FG = 3.6L (Tension)

From joint G,

$$\theta = \tan^{-1} \left(\frac{0.2}{1.2} \right) = 9.5^{\circ}$$

$$\Sigma F_x = 0; \quad -3.6L + \text{GH} \cos \theta = 0; \quad \text{GH} = 3.65L \text{ (Tension)}$$

$$\Sigma F_y = 0; \quad \text{DG} - 3.65L \sin \theta = 0; \quad \text{DG} = 0.60L \text{ (Tension)}$$

(5)

$$\begin{split} \overline{L} = & \frac{L}{\sqrt{2}}(-i+j); \qquad \overline{F}_{EF} = F_{EF}i; \quad \overline{F}_{CF} = \frac{F_{CF}}{\sqrt{5}}(-j-2k); \\ & \overline{F}_{DF} = \frac{F_{DF}}{\sqrt{5}}(j-2k) \end{split}$$

At joint F, $\sum F = \overline{L} + \overline{F}_{EF} + \overline{F}_{CF} + \overline{F}_{DF} = 0$ and equating the coefficient of *i*, *j* and *k*

$$-\frac{L}{\sqrt{2}} + F_{EF} = 0$$
$$\frac{L}{\sqrt{2}} - \frac{F_{CF}}{\sqrt{5}} + \frac{F_{DF}}{\sqrt{5}} = 0$$
$$-\frac{2}{\sqrt{5}}F_{CF} - \frac{2}{\sqrt{5}}F_{DF} = 0$$

 $F_{EF} = \frac{L}{\sqrt{2}}$ From above three equation $F_{CF} = \frac{\sqrt{5}L}{2\sqrt{2}}$ $F_{DF} = -\frac{\sqrt{5}L}{2\sqrt{2}}$

At joint C, $\overline{F}_{CD} = F_{CD}j$; $\overline{F}_{BC} = F_{BC}i$; $\overline{F}_{CE} = \frac{F_{CE}}{\sqrt{6}}(i+j+2k)$; $\bar{F}_{CF} = \frac{F_{CF}}{\sqrt{5}}(j+2k) = \frac{L}{2\sqrt{2}}(j+2k)$ For equilibrium $\sum F = \overline{F}_{CD} + \overline{F}_{BC} + \overline{F}_{CE} + \overline{F}_{CF} = 0$ And equating coefficient of *i*, *j* and *k*

$$F_{BC} + \frac{F_{CE}}{\sqrt{6}} = 0$$

$$F_{CD} + \frac{F_{CE}}{\sqrt{6}} + \frac{L}{2\sqrt{2}} = 0$$

$$\frac{2F_{CE}}{\sqrt{6}} + \frac{L}{\sqrt{2}} = 0$$

 $F_{BC} = \frac{L\sqrt{2}}{4}$ Solving the above three equation $F_{CD} = 0$ $F_{CE} = -\frac{L\sqrt{3}}{2}$

$$\overline{GJ} = -GJi; \quad \overline{FI} = -FIi; \quad \overline{FJ} = \frac{FJ}{\sqrt{2}}(-i+k)$$

Taking moment around joint H

$$\sum M_{H} = 0$$

-49.05(5)k + (-2 cos 30° j + 2 sin 30° k)(-GJi)
+ (-2 cos 30° j - 2 sin 30° k)(-FIi)
+ (i - 2 cos 30° j - k) $\left\{\frac{FJ}{\sqrt{2}}(-i+k)\right\} = 0$

Equating coefficient of i, j and k

$$-1.225FJ = 0$$

-GJ + FI = 0
-1.732GJ - 1.732FI = 245

FJ = 0Solving these three equation FI = -70.8 kN (Compression) GJ = -70.8 kN (Compression)

(7)

In above figure elements numbers are given

Considering the whole truss, Vertical reaction at A (R_2) and reaction at H (R_3) would be

$$R_2 + R_3 = 3200$$

Taking moment about A, considering anti-clock wise as positive

Λ

$$\sum M_A = 0$$

-1.7(800) - 3.4(800) - 5.1(800) + 6.8(R_3 - 400) = 0; R_3 = 1600 N
 $R_2 = 1600 N$

Force in member +ve is compression and -ve is tension.

Note: At each joint, angles are marked as new and have no continuation from other joints.

From joint A, $\theta = \tan^{-1}\left(\frac{3.2}{2}\right) = 57.99^{\circ}; \ \phi = \tan^{-1}\left(\frac{3.2+3.6}{2}\right) = 73.61^{\circ}$ $\Sigma F_H = 0;$ $F_1 \sin \phi + F_2 \sin \theta = 0$ $\sum F_V = 0; -400 + R_2 + F_1 \cos \phi + F_2 \cos \theta = 0$ $F_1 cos\phi + F_2 \cos\theta = -1200$

This gives $F_1 = 3780.27 N$; $F_2 = -4276.74 N$

From joint B,
$$\alpha = 16.3895^{\circ}$$
; $\phi = \alpha$; $\theta = 73.61^{\circ}$

 $\Sigma F_H = 0$; $F_1 \cos \alpha + F_3 \sin \phi - F_4 \sin \theta = 0$; $F_3 \sin \phi - F_4 \sin \theta = -3626.66$

 $\sum F_V = 0; \quad -800 - F_1 \sin \alpha + F_3 \cos \phi + F_4 \cos \theta = 0; \quad F_3 \cos \phi + F_4 \cos \theta = 1866.66$ This gives, $F_3 = 767.49 N; \quad F_4 = 4006.00 N$

From joint C, $\theta = 57.9946^{\circ}$; $\phi = 16.3895^{\circ}$

$$\sum F_H = 0$$
; $F_2 \sin \theta - F_5 - F_6 \sin \theta - F_3 \sin \phi = 0$; $F_5 + F_6 \sin \theta = -3843.23$

 $\sum F_V = 0$; $F_6 \cos \theta - F_2 \cos \theta - F_3 \cos \phi = 0$

This gives $F_6 = -2887.49 N$; $F_5 = -1394.65 N$

From joint E, $\theta = 57.99^{\circ}$; $\phi = 78.69^{\circ}$

 $\Sigma F_V = 0$; $F_6 \cos \theta + F_9 \sin \phi = 0$; $F_9 = 1560.67 N$

 $\sum F_V = 0$; $F_6 \sin \theta - F_9 \cos \phi - F_{10} = 0$; $F_{10} = -2754.66 N$

From joint D, $\phi = 73.61^{\circ}$; $\theta = 78.69^{\circ}$; $\beta = 16.39^{\circ}$; $\alpha = 57.22^{\circ}$

 $\sum F_{H} = 0; \quad F_{5} + F_{4} \sin \phi + F_{9} \cos \theta - F_{8} \sin \alpha - F_{7} \sin \phi = 0; \quad F_{8} \sin \alpha + F_{7} \sin \phi = 2754.64$ $\sum F_{V} = 0; \quad -F_{4} \cos \phi + F_{8} \cos \alpha + F_{7} \cos \phi + F_{9} \sin \theta - 800 = 0; \quad F_{8} \cos \alpha + F_{7} \cos \phi = 400$

This gives $F_7 = 4093.54 N$; $F_8 = -1394.64 N$

From joint H, $\theta = 73.61^{\circ}$

 $\sum F_V = 0$; $F_{11} \cos \theta = 1200$; $F_{11} = 4252.82 N$

 $\sum F_H = 0; F_{13} + F_{11} \sin \theta = 0; F_{13} = -4080.01 N$

From joint G, $\theta = 73.61^\circ$; $\alpha = 57.22^\circ$

 $\sum F_H = 0; \quad F_{10} + F_8 \sin \alpha - F_{13} - F_{12} \cos \theta = 0; \quad F_8 \sin \alpha - F_{12} \cos \theta = -1325.35$

$$\sum F_V = 0$$
; $F_8 \cos \alpha + F_{12} \sin \theta = 0$

This gives $F_8 = -1325.35$; $F_{12} = 747.94 N$

+ve: Compression, -ve: Tension

Force (N)
3780.27
-4276.74
767.49
4006.00
-1394.65
-2887.49
4093.54
-1325.35
1560.67
-2754.66
4252.82
747.94
-4080.01

Note: One set of solution is provided. Method of sections is left as home task for the students to compare the above results.

(8) For equilibrium of entire truss, $V_H + V_L = P + Q$ Taking moment about joint L, (considering clockwise +ve)

$$\sum M_{L} = 0; \qquad V_{H}(4a) - P(2a) - Q(a) = 0; \qquad V_{H} = \frac{2P + Q}{4}$$

$$V_{L} = \frac{2P + Q}{4}$$

$$H = \frac{F_{HP}}{\frac{2P + Q}{4}}$$

From joint H,
$$\sum F_y = 0; \quad \frac{F_{HD}}{\sqrt{2}} = \frac{2P+Q}{4}; \quad F_{HD} = \sqrt{2} \frac{(2P+Q)}{4} \quad (C)$$

 $\sum F_x = 0; \quad F_{HI} = F_{HD} \frac{1}{\sqrt{2}} = \frac{2P+Q}{4} \quad (T)$

From joint D, $\sum F_{y'} = 0$; $F_{DA} = F_{DH} = \sqrt{2} \frac{2P+Q}{4} (C)$ $\sum F_{x'} = 0$; $F_{DI} = 0$

From joint I, $\sum F_y = 0$; $F_{IA} + F_{IE} \frac{1}{\sqrt{2}} = 0$ $\sum F_x = 0$; $F_{IJ} + F_{IE} \frac{1}{\sqrt{2}} = F_{IH}$ From above two equation $F_{IH} = F_{IJ} = \frac{2P+Q}{4}$ (*T*) and $F_{IA} = F_{IE} = 0$

From joint A,
$$\sum F_y = 0$$
; $F_{AE} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\sqrt{2}\frac{2P+Q}{4} = 0$; $F_{AE} = \sqrt{2}\left(\frac{2P+Q}{4}\right)$ (T)
 $\sum F_y = 0$; $F_{AB} + F_{AE} \frac{1}{\sqrt{2}} = -\sqrt{2}\left(\frac{2P+Q}{4}\right)\frac{1}{\sqrt{2}}$; $F_{AB} = -\frac{2P+Q}{2}$ (C)

From joint B, $\sum F_x = 0$; $F_{BC} = -\frac{2P+Q}{2}$ (C)

From joint J,
$$\sum F_y = 0$$
; $F_{JF} \frac{1}{\sqrt{2}} - P + \sqrt{2} \left(\frac{2P+Q}{4}\right) \frac{1}{\sqrt{2}} = 0$; $F_{JF} = \sqrt{2} \left(\frac{2P-Q}{4}\right) (T)$
 $\sum F_x = 0$; $F_{JK} + F_{JF} \frac{1}{\sqrt{2}} = \sqrt{2} \left(\frac{2P+Q}{4}\right) \frac{1}{\sqrt{2}} + \frac{2P+Q}{4}$
 $F_{JK} = \frac{2P+3Q}{4} (T)$
Same as joint D, at joint F
 $F_{JF} = F_{FC}$; $F_{FK} = 0$

 $\Sigma F_y = 0;$ $F_{BJ} = -P$ (C)

Joint L

From joint L,
$$\sum F_x = 0$$
; $F_{LK} - \sqrt{2} \left(\frac{2P+Q}{4}\right) \frac{1}{\sqrt{2}} = 0$; $F_{LK} = \frac{2P+3Q}{4}$ (T)

Member	Force	Type (C:
		Compression, T:
		Tension)
HI	$\frac{2P+Q}{4}$	Т
HD	$\frac{\sqrt{2}(2P+Q)}{\sqrt{2}(2P+Q)}$	С
DA	$\frac{4}{\sqrt{2}(2P+Q)}$	С
AI	$4 \\ 0$	
IE	0	
ĀĒ	$\sqrt{2}(2P+Q)$	Т
EJ	$\frac{4}{\sqrt{2}(2P+Q)}$	Т
AB	2P + Q	С
BJ	2 P	С
JK	$\frac{2P+3Q}{1}$	Т
JF	$\sqrt{2}\left(\frac{2P-Q}{4}\right)$	Т
FC	$\sqrt{2}\left(\frac{2P-Q}{4}\right)$	Т
BC	$\frac{2P+Q}{2P+Q}$	С
СК	Q^2	Т
KG	0	
KL	$\frac{2P+3Q}{4}$	Т
FK	$\overset{4}{0}$	
CG	$\sqrt{2}\left(\frac{2P+3Q}{2}\right)$	С
GL	$\sqrt{2}\left(\frac{2P+3Q}{4}\right)$	С
IJ	$\frac{2P+Q}{A}$	Т
	4	

Note: One set of solution is provided. Method of sections is left as home task for the students to compare the above results.

Co-ordinate of the joints are A(-1.125,1.7,-0.6), B(-1.125,0,0), C(-1.125, 0,-0.6), D(0,0,-0.6) and E(0,0,0)

$$\overline{EB} = EB\left(\frac{1.125i}{\sqrt{1.125^2}}\right)$$
$$\overline{ED} = ED\left(\frac{0.6k}{\sqrt{0.6^2}}\right)$$
$$\overline{EA} = EA\left(\frac{1.125i - 1.7j + 0.6k}{\sqrt{1.125^2 + 1.7^2 + 0.6^2}}\right) = EA(0.53i - 0.8j + 0.3k)$$
$$\overline{P} = -1700j$$

For equilibrium of joint E

$$\overline{EB} + \overline{ED} + \overline{EA} + \overline{P} = 0$$

Replacing the vector value in above equation and equating the coefficients of unit vector i, j and k

EB + 0.53EA = 0; -0.8EA - 1700 = 0; ED + 0.3EA = 0This will give EB = 1126.25 N(C); EA = -2125 N(T); ED = 637.5 N(C)

$$\overline{DB} = DB \left(\frac{1.125i - 0.6k}{\sqrt{1.125^2 + 0.6^2}} \right) = DB(0.9i - 0.5k)$$
$$\overline{DC} = DC \frac{1.125i}{\sqrt{1.125^2}} = DCi$$

(9)

$$\overline{DA} = DA\left(\frac{1.125i - 1.7j}{\sqrt{1.125^2 + 1.7^2}}\right) = DA(0.55i - 0.83j)$$

For equilibrium of joint D

$$\overline{DE} + \overline{DB} + \overline{DC} + \overline{DA} = 0$$

Replacing the vector value in above equation and collecting the coefficient of unit vector

0.9DB + DC + 0.55DA = 0; -0.83DA = 0; -0.5DB - ED = 0This will give DC = 1147.5 N(C); DA = 0; DB = -1275 N(T)

$$\overline{BC} = BC \frac{0.6k}{\sqrt{0.6^2}} = BCk$$
$$\overline{BA} = BA \left(\frac{-1.7j + 0.6k}{\sqrt{1.7^2 + 0.6^2}}\right) = BA(-0.94j + 0.33k)$$

For equilibrium of joint B

$$\overline{BE} + \overline{BD} + \overline{BC} + \overline{BA} = 0$$

Replacing the vector value in above equation and collection the coefficient of unit vector 0.94BA = 0; -0.5(-1275) + BC + 0.33(BA) = 0

This will give BA = 0; BC = -637.5 N(T)

For joint equilibrium of joint C

$$\overline{CA} + \overline{CB} + \overline{CD} = 0$$

Replacing the vector value in above equation and collection the coefficient of unit vector

$$CA = 0$$

(10)

In the given truss, number of member is m = 28, number of joint is j = 15Therefore,

$$m + 3 = 31 > 2j$$

Hence, it is an indeterminate truss and can not be solved by method of sections. However, zero force members may be identified this case. Students are advised to identify those members.