(1) Considering whole truss, taking moment about C (assuming clockwise +ve)

$$
\begin{gathered}
\sum M_{C}=0 ; \quad V_{A}(6)-2(3)=0 \\
V_{A}=1
\end{gathered}
$$

A section is considered between E and D

Taking moment about B (assuming clockwise +ve)

$$
\sum M_{B}=0 ; \quad V_{A}(3)+F_{E D}(3)=0
$$

This gives $F_{E D}=-1 N(C)$
Taking moment about D (assuming clockwise +ve)

$$
\sum M_{D}=0 ; V_{A}(6)-F_{B C}(3)=0
$$

This gives $F_{B C}=2 N(T)$
For vertical equilibrium

$$
\sum F_{V}=0 ; \quad V_{A}+F_{B D} \sin 45^{\circ}=0
$$

This gives $F_{B D}=-\sqrt{2} N(C)$
(2)

$$
\begin{aligned}
\overline{\mathrm{BA}}=\mathrm{BA} \frac{-i-3 j-6 k}{\sqrt{1^{2}+3^{3}+6^{2}}} & =\mathrm{BA} \frac{-i-3 j-6 k}{\sqrt{46}} \\
\overline{\mathrm{CA}}=\mathrm{CA} \frac{2 i-6 k}{\sqrt{2^{2}+6^{2}}} & =\mathrm{CA} \frac{2 i-6 k}{\sqrt{40}} \\
\overline{\mathrm{DA}}=\mathrm{DA} \frac{-i+3 j-6 k}{\sqrt{1^{2}+3^{2} 6^{2}}} & =\mathrm{DA} \frac{-i+3 j-6 k}{\sqrt{46}}
\end{aligned}
$$

$\sum F_{A}=0$ which gives $\overline{\mathrm{BA}}+\overline{\mathrm{CA}}+\overline{\mathrm{DA}}-5\left(\cos 30^{\circ} i+\sin 30^{\circ} j\right)=0$

Equating coefficient of i, j and k to the right hand

$$
\begin{aligned}
& -\frac{1}{\sqrt{46}} \mathrm{BA}+\frac{2}{\sqrt{40}} \mathrm{CA}-\frac{1}{\sqrt{46}} \mathrm{DA}=0 \\
& -\frac{3}{\sqrt{46}} \mathrm{BA}+\frac{3}{\sqrt{46}} \mathrm{DA}-\frac{1}{2} 5=0 \\
& -\frac{6}{\sqrt{46}} \mathrm{BA}-\frac{6}{\sqrt{40}} \mathrm{CA}-\frac{6}{\sqrt{46}} \mathrm{DA}-5 \frac{\sqrt{3}}{2}=0 \\
& \mathrm{BA}=-4.46 \mathrm{kN}
\end{aligned}
$$

Solving this three equation $\mathrm{CA}=-1.521 \mathrm{kN}$

$$
\mathrm{DA}=1.194 \mathrm{kN}
$$

(3)

$$
\begin{aligned}
& \text { Soint } \mathcal{A} \\
& \theta=\tan ^{-1} \frac{1}{2}=26.57^{\circ} \quad \sin \theta=\frac{1}{\sqrt{5}} \quad \cos \theta=\frac{2}{\sqrt{5}} \\
& \sum F_{y}=0 ; \quad \frac{\mathrm{AG}}{\sqrt{5}}-4=0 ; \quad \mathrm{AG}=4 \sqrt{5} \mathrm{kN} \text { (Compression) } \\
& \sum F_{x}=0 ; \quad \mathrm{AB}-4 \sqrt{5}\left(\frac{2}{\sqrt{5}}\right)=0 ; \quad \mathrm{AB}=8 \mathrm{kN} \text { (Tension) }
\end{aligned}
$$

From joint $\mathrm{B}, \sum F_{x}=0 ; \quad \mathrm{BC}=8 \mathrm{kN}$ (Tension)

$$
\sum F_{y}=0 ; \quad B G=2 k N(\text { Compression })
$$

From joint $\mathrm{G}, \sum F_{y}^{\prime}=0 ; \quad 2\left(\frac{2}{\sqrt{5}}\right)-\mathrm{CG} \sin 2 \theta=0 ; \quad \mathrm{CG}=2.24 \mathrm{kN}$ (Tension)
$\sum F_{x^{\prime}}=0 ; \quad 2.24 \cos 2 \theta+\frac{2}{\sqrt{5}}+\frac{4}{\sqrt{5}}-\mathrm{GF}=0 ; \quad \mathrm{GF}=11.18 \mathrm{kN}$ (Compression)

From joint $\mathrm{C}, \sum F_{y}=0 ; \quad \mathrm{CF}-2.24 \sin \theta=0 ; \quad \mathrm{CF}=1.0 \mathrm{kN}$ (Compreesion) $\sum F_{x}=0 ; \quad C D-2-2.24 \cos \theta=0 ; \quad C D=4.0 \mathrm{kN}$ (Tension)
(4) Considering entire truss, reactions at A and B are

$$
\mathrm{A}=\mathrm{B}=3 L
$$

Considering section between ED, and taking moment about D (assuming anti-clockwise positive)

$$
\sum M_{D}=0 ; \quad \mathrm{FG}(1)+L(1.2+2.4)-3 L(2.4)=0 ; \quad \mathrm{FG}=3.6 L(\text { Tension })
$$

From joint G,

$$
\begin{gathered}
\theta=\tan ^{-1}\left(\frac{0.2}{1.2}\right)=9.5^{\circ} \\
\sum F_{x}=0 ; \quad-3.6 L+\mathrm{GH} \cos \theta=0 ; \quad \mathrm{GH}=3.65 L \text { (Tension) } \\
\sum F_{y}=0 ; \quad \mathrm{DG}-3.65 L \sin \theta=0 ; \quad \mathrm{DG}=0.60 L \text { (Tension) }
\end{gathered}
$$

(5)

$\bar{L}=\frac{L}{\sqrt{2}}(-i+j) ; \quad \bar{F}_{E F}=F_{E F} i ; \quad \bar{F}_{C F}=\frac{F_{C F}}{\sqrt{5}}(-j-2 k) ;$

$$
\bar{F}_{D F}=\frac{F_{D F}}{\sqrt{5}}(j-2 k)
$$

At joint $\mathrm{F}, \sum F=\bar{L}+\bar{F}_{E F}+\bar{F}_{C F}+\bar{F}_{D F}=0$ and equating the coefficient of i, j and k

$$
\begin{gathered}
-\frac{L}{\sqrt{2}}+F_{E F}=0 \\
\frac{L}{\sqrt{2}}-\frac{F_{C F}}{\sqrt{5}}+\frac{F_{D F}}{\sqrt{5}}=0 \\
-\frac{2}{\sqrt{5}} F_{C F}-\frac{2}{\sqrt{5}} F_{D F}=0
\end{gathered}
$$

$$
F_{E F}=\frac{L}{\sqrt{2}}
$$

From above three equation $F_{C F}=\frac{\sqrt{5} L}{2 \sqrt{2}}$

$$
F_{D F}=-\frac{\sqrt{5} L}{2 \sqrt{2}}
$$

At joint $C, \quad \bar{F}_{C D}=F_{C D} j ; \quad \bar{F}_{B C}=F_{B C} i ; \quad \bar{F}_{C E}=\frac{F_{C E}}{\sqrt{6}}(i+j+2 k) ;$

$$
\bar{F}_{C F}=\frac{F_{C F}}{\sqrt{5}}(j+2 k)=\frac{L}{2 \sqrt{2}}(j+2 k)
$$

For equilibrium $\sum F=\bar{F}_{C D}+\bar{F}_{B C}+\bar{F}_{C E}+\bar{F}_{C F}=0$
And equating coefficient of i, j and k

$$
\begin{gathered}
F_{B C}+\frac{F_{C E}}{\sqrt{6}}=0 \\
F_{C D}+\frac{F_{C E}}{\sqrt{6}}+\frac{L}{2 \sqrt{2}}=0 \\
\frac{2 F_{C E}}{\sqrt{6}}+\frac{L}{\sqrt{2}}=0
\end{gathered}
$$

$$
F_{B C}=\frac{L \sqrt{2}}{4}
$$

Solving the above three equation $\quad F_{C D}=0$

$$
F_{C E}=-\frac{L \sqrt{3}}{2}
$$

(6)

Taking moment around joint H

$$
\begin{aligned}
& \sum M_{H}=0 \\
&-49.05(5) k+\left(-2 \cos 30^{\circ} j+2 \sin 30^{\circ} k\right)(-G J i) \\
&+\left(-2 \cos 30^{\circ} j-2 \sin 30^{\circ} k\right)(-F I i) \\
&+\left(i-2 \cos 30^{\circ} j-k\right)\left\{\frac{F J}{\sqrt{2}}(-i+k)\right\}=0
\end{aligned}
$$

Equating coefficient of i, j and k

$$
\begin{gathered}
-1.225 F J=0 \\
-G J+F I=0 \\
-1.732 G J-1.732 F I=245 \\
F J=0
\end{gathered}
$$

Solving these three equation $F I=-70.8 \mathrm{kN}$ (Compression)

$$
G J=-70.8 \mathrm{kN} \quad \text { (Compression) }
$$

(7)

In above figure elements numbers are given
Considering the whole truss, Vertical reaction at $\mathrm{A}\left(R_{2}\right)$ and reaction at $\mathrm{H}\left(R_{3}\right)$ would be

$$
R_{2}+R_{3}=3200
$$

Taking moment about A , considering anti-clock wise as positive

$$
\begin{gathered}
\sum M_{A}=0 \\
-1.7(800)-3.4(800)-5.1(800)+6.8\left(R_{3}-400\right)=0 ; \quad R_{3}=1600 \mathrm{~N} \\
R_{2}=1600 \mathrm{~N}
\end{gathered}
$$

Force in member +ve is compression and -ve is tension.
Note: At each joint, angles are marked as new and have no continuation from other joints.

$$
\begin{aligned}
& \text { From joint } \mathrm{A}, \theta=\tan ^{-1}\left(\frac{3.2}{2}\right)=57.99^{\circ} ; \phi=\tan ^{-1}\left(\frac{3.2+3.6}{2}\right)=73.61^{\circ} \\
& \qquad \begin{array}{c}
\sum F_{H}=0 ; \quad F_{1} \sin \phi+F_{2} \sin \theta=0 \\
\sum F_{V}=0 ;-400+R_{2}+F_{1} \cos \phi+F_{2} \cos \theta=0 \\
F_{1} \cos \phi+F_{2} \cos \theta=-1200
\end{array}
\end{aligned}
$$

This gives $F_{1}=3780.27 N ; \quad F_{2}=-4276.74 N$

From joint B, $\alpha=16.3895^{\circ} ; \quad \phi=\alpha ; \quad \theta=73.61^{\circ}$
$\sum F_{H}=0 ; \quad F_{1} \cos \alpha+F_{3} \sin \phi-F_{4} \sin \theta=0 ; F_{3} \sin \phi-F_{4} \sin \theta=-3626.66$
$\sum F_{V}=0 ;-800-F_{1} \sin \alpha+F_{3} \cos \phi+F_{4} \cos \theta=0 ; \quad F_{3} \cos \phi+F_{4} \cos \theta=1866.66$
This gives, $F_{3}=767.49 N ; \quad F_{4}=4006.00 \mathrm{~N}$

From joint C, $\theta=57.9946^{\circ} ; \quad \phi=16.3895^{\circ}$
$\sum F_{H}=0 ; F_{2} \sin \theta-F_{5}-F_{6} \sin \theta-F_{3} \sin \phi=0 ; \quad F_{5}+F_{6} \sin \theta=-3843.23$

$$
\sum F_{V}=0 ; \quad F_{6} \cos \theta-F_{2} \cos \theta-F_{3} \cos \phi=0
$$

This gives $F_{6}=-2887.49 N ; \quad F_{5}=-1394.65 N$

From joint E, $\theta=57.99^{\circ} ; \quad \phi=78.69^{\circ}$
$\sum F_{V}=0 ; \quad F_{6} \cos \theta+F_{9} \sin \phi=0 ; \quad F_{9}=1560.67 N$
$\sum F_{V}=0 ; \quad F_{6} \sin \theta-F_{9} \cos \phi-F_{10}=0 ; \quad F_{10}=-2754.66 N$

From joint $\mathrm{D}, \phi=73.61^{\circ} ; \theta=78.69^{\circ} ; \beta=16.39^{\circ} ; \alpha=57.22^{\circ}$
$\sum F_{H}=0 ; \quad F_{5}+F_{4} \sin \phi+F_{9} \cos \theta-F_{8} \sin \alpha-F_{7} \sin \phi=0 ; \quad F_{8} \sin \alpha+F_{7} \sin \phi=2754.64$ $\Sigma F_{V}=0 ;-F_{4} \cos \phi+F_{8} \cos \alpha+F_{7} \cos \phi+F_{9} \sin \theta-800=0 ; \quad F_{8} \cos \alpha+F_{7} \cos \phi=400$

This gives $F_{7}=4093.54 N ; \quad F_{8}=-1394.64 N$

From joint $H, \theta=73.61^{\circ}$

$$
\begin{array}{cl}
\sum F_{V}=0 ; \quad F_{11} \cos \theta=1200 ; & F_{11}=4252.82 \mathrm{~N} \\
\sum F_{H}=0 ; \quad F_{13}+F_{11} \sin \theta=0 ; \quad F_{13}=-4080.01 \mathrm{~N}
\end{array}
$$

From joint G, $\theta=73.61^{\circ} ; \quad \alpha=57.22^{\circ}$

$$
\begin{gathered}
\sum F_{H}=0 ; \quad F_{10}+F_{8} \sin \alpha-F_{13}-F_{12} \cos \theta=0 ; \quad F_{8} \sin \alpha-F_{12} \cos \theta=-1325.35 \\
\sum F_{V}=0 ; F_{8} \cos \alpha+F_{12} \sin \theta=0
\end{gathered}
$$

This gives $F_{8}=-1325.35 ; \quad F_{12}=747.94 N$
+ve: Compression, -ve: Tension

Member	Force (N)
F_{1}	3780.27
F_{2}	-4276.74
F_{3}	767.49
F_{4}	4006.00
F_{5}	-1394.65
F_{6}	-2887.49
F_{7}	4093.54
F_{8}	-1325.35
F_{9}	1560.67
F_{10}	-2754.66
F_{11}	4252.82
F_{12}	747.94
F_{13}	-4080.01

Note: One set of solution is provided. Method of sections is left as home task for the students to compare the above results.
(8) For equilibrium of entire truss, $V_{H}+V_{L}=P+Q$

Taking moment about joint L , (considering clockwise +ve)

$$
\sum M_{L}=0 ; \quad V_{H}(4 a)-P(2 a)-Q(a)=0 ; \quad V_{H}=\frac{2 P+Q}{4}
$$

From joint $\mathrm{H}, \quad \sum F_{y}=0 ; \quad \frac{F_{H D}}{\sqrt{2}}=\frac{2 P+Q}{4} ; \quad F_{H D}=\sqrt{2} \frac{(2 P+Q)}{4}(C)$

$$
\begin{equation*}
\sum F_{x}=0 ; \quad F_{H I}=F_{H D} \frac{1}{\sqrt{2}}=\frac{2 P+Q}{4} \tag{T}
\end{equation*}
$$

Joint D

From joint $\mathrm{D}, \sum F_{y^{\prime}}=0 ; \quad F_{D A}=F_{D H}=\sqrt{2} \frac{2 P+Q}{4}(C)$

$$
\sum F_{x^{\prime}}=0 ; \quad F_{D I}=0
$$

From joint I, $\Sigma F_{y}=0 ; \quad F_{I A}+F_{I E} \frac{1}{\sqrt{2}}=0$

$$
\sum F_{x}=0 ; \quad F_{I J}+F_{I E} \frac{1}{\sqrt{2}}=F_{I H}
$$

From above two equation $F_{I H}=F_{I J}=\frac{2 P+Q}{4}(T)$ and $F_{I A}=F_{I E}=0$

From joint $A, \sum F_{y}=0 ; \quad F_{A E} \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \sqrt{2} \frac{2 P+Q}{4}=0 ; \quad F_{A E}=\sqrt{2}\left(\frac{2 P+Q}{4}\right)(T)$ $\Sigma F_{y}=0 ; \quad F_{A B}+F_{A E} \frac{1}{\sqrt{2}}=-\sqrt{2}\left(\frac{2 P+Q}{4}\right) \frac{1}{\sqrt{2}} ; \quad F_{A B}=-\frac{2 P+Q}{2}$

Doint B

Joint J

From joint B, $\sum F_{x}=0 ; \quad F_{B C}=-\frac{2 P+Q}{2}$

$$
\begin{equation*}
\sum F_{y}=0 ; \quad F_{B J}=-P \tag{C}
\end{equation*}
$$

From joint $\mathrm{J}, \sum F_{y}=0 ; \quad F_{J F} \frac{1}{\sqrt{2}}-P+\sqrt{2}\left(\frac{2 P+Q}{4}\right) \frac{1}{\sqrt{2}}=0 ; \quad F_{J F}=\sqrt{2}\left(\frac{2 P-Q}{4}\right)$

$$
\begin{gather*}
\sum F_{x}=0 ; \quad F_{J K}+F_{J F} \frac{1}{\sqrt{2}}=\sqrt{2}\left(\frac{2 P+Q}{4}\right) \frac{1}{\sqrt{2}}+\frac{2 P+Q}{4} \tag{T}\\
F_{J K}=\frac{2 P+3 Q}{4}(T)
\end{gather*}
$$

Same as joint D, at joint F

$$
F_{J F}=F_{F C} ; \quad F_{F K}=0
$$

From joint C, $\sum F_{x}=0 ; \quad F_{C G} \frac{1}{\sqrt{2}}=-\frac{2 P+Q}{2}+\sqrt{2}\left(\frac{2 P-Q}{4}\right) \frac{1}{\sqrt{2}} ; \quad F_{C G}=-\sqrt{2}\left(\frac{2 P+3 Q}{4}\right)$

$$
\begin{equation*}
\sum F_{y}=0 ; \quad F_{C K}+F_{C G} \frac{1}{\sqrt{2}}+\sqrt{2}\left(\frac{2 P-Q}{4}\right) \frac{1}{\sqrt{2}}=0 ; \quad F_{C K}=Q \quad(T) \tag{C}
\end{equation*}
$$

Same as joint D, at joint G

$$
F_{C G}=F_{G L} ; \quad F_{G K}=0
$$

$$
\begin{equation*}
\text { Joint } L \tag{T}
\end{equation*}
$$

From joint $\mathrm{L}, \sum F_{x}=0 ; \quad F_{L K}-\sqrt{2}\left(\frac{2 P+Q}{4}\right) \frac{1}{\sqrt{2}}=0 ; \quad F_{L K}=\frac{2 P+3 Q}{4}$

Member	Force	Type (C: Compression, T : Tension)
HI	$2 P+Q$	T
HD	$\begin{gathered} 4 \\ \sqrt{2}(2 P+Q) \end{gathered}$	C
DA	$\begin{gathered} 4 \\ \sqrt{2}(2 P+Q) \end{gathered}$	C
AI	4 0	
IE	0	
AE	$\sqrt{2}(2 P+Q)$	T
EJ	$\begin{gathered} 4 \\ \sqrt{2}(2 P+Q) \end{gathered}$	T
AB	$2 P^{4}+Q$	C
BJ	$\stackrel{2}{P}$	C
JK	$2 P+3 Q$	T
JF	$\sqrt{\frac{4}{2}\left(\frac{2 P-Q}{4}\right)}$	T
FC	$\sqrt{2}\left(\frac{2 P-Q}{4}\right)$	T
BC	$\underline{2 P+Q}$	C
CK	$\stackrel{2}{Q}$	T
KG	0	
KL	$2 P+3 Q$	T
FK	4 0	
CG	$\sqrt{2}\left(\frac{2 P+3 Q}{4}\right)$	C
GL	$\sqrt{2}\left(\frac{2 P+3 Q}{4}\right)$	C
IJ	$2 P+Q$	T

Note: One set of solution is provided. Method of sections is left as home task for the students to compare the above results.

Co-ordinate of the joints are $\mathrm{A}(-1.125,1.7,-0.6), \mathrm{B}(-1.125,0,0), \mathrm{C}(-1.125,0,-0.6), \mathrm{D}(0,0,-$ $0.6)$ and $\mathrm{E}(0,0,0)$

$$
\begin{gathered}
\overline{E B}=E B\left(\frac{1.125 i}{\sqrt{1.125^{2}}}\right) \\
\overline{E D}=E D\left(\frac{0.6 k}{\sqrt{0.6^{2}}}\right) \\
\overline{E A}=E A\left(\frac{1.125 i-1.7 j+0.6 k}{\sqrt{1.125^{2}+1.7^{2}+0.6^{2}}}\right)=E A(0.53 i-0.8 j+0.3 k) \\
\bar{P}=-1700 j
\end{gathered}
$$

For equilibrium of joint E

$$
\overline{E B}+\overline{E D}+\overline{E A}+\bar{P}=0
$$

Replacing the vector value in above equation and equating the coefficients of unit vector i, j and k

$$
E B+0.53 E A=0 ; \quad-0.8 E A-1700=0 ; \quad E D+0.3 E A=0
$$

This will give $E B=1126.25 N(C) ; E A=-2125 N(T) ; \quad E D=637.5 N(C)$

$$
\begin{gathered}
\overline{D B}=D B\left(\frac{1.125 i-0.6 k}{\sqrt{1.125^{2}+0.6^{2}}}\right)=D B(0.9 i-0.5 k) \\
\overline{D C}=D C \frac{1.125 i}{\sqrt{1.125^{2}}}=D C i
\end{gathered}
$$

$$
\overline{D A}=D A\left(\frac{1.125 i-1.7 j}{\sqrt{1.125^{2}+1.7^{2}}}\right)=D A(0.55 i-0.83 j)
$$

For equilibrium of joint D

$$
\overline{D E}+\overline{D B}+\overline{D C}+\overline{D A}=0
$$

Replacing the vector value in above equation and collecting the coefficient of unit vector

$$
0.9 D B+D C+0.55 D A=0 ;-0.83 D A=0 ;-0.5 D B-E D=0
$$

This will give $D C=1147.5 N(C) ; \quad D A=0 ; \quad D B=-1275 N(T)$

$$
\begin{gathered}
\overline{B C}=B C \frac{0.6 k}{\sqrt{0.6^{2}}}=B C k \\
\overline{B A}=B A\left(\frac{-1.7 j+0.6 k}{\sqrt{1.7^{2}+0.6^{2}}}\right)=B A(-0.94 j+0.33 k)
\end{gathered}
$$

For equilibrium of joint B

$$
\overline{B E}+\overline{B D}+\overline{B C}+\overline{B A}=0
$$

Replacing the vector value in above equation and collection the coefficient of unit vector

$$
0.94 B A=0 ;-0.5(-1275)+B C+0.33(B A)=0
$$

This will give $B A=0 ; \quad B C=-637.5 N(T)$

For joint equilibrium of joint C

$$
\overline{C A}+\overline{C B}+\overline{C D}=0
$$

Replacing the vector value in above equation and collection the coefficient of unit vector

$$
C A=0
$$

In the given truss, number of member is $m=28$, number of joint is $j=15$
Therefore,

$$
m+3=31>2 j
$$

Hence, it is an indeterminate truss and can not be solved by method of sections. However, zero force members may be identified this case. Students are advised to identify those members.

