# ME101 Engineering Mechanics <br> (Tutorial 5) 

Time: 8:00-8:55 am
Date: 13/02/2013
Note: Each question carries 10 Marks
Section 1 (To be discussed by the tutor)
Q. No 1 Locate the centroid of the plane area shown in Fig 1.


Fig. 1


Fig. 2
Q. No 2 Determine moment of inertia of the circular section about x and y axis (Fig. 2)

Section 2: Tutorial Questions
Q. No 3 The aluminum shade for the small high intensity lamp shown in Fig. 3 has a uniform thickness of 1 mm . Knowing that the density of aluminum is $2800 \mathrm{~kg} / \mathrm{m}^{3}$, determine the mass of the shade.


Fig. 3
Q. No 4 The shade for a wall mounted light is formed from a thin sheet of translucent plastic. Determine the surface area of the outside of the shade, knowing that it has the parabolic cross section as shown in Fig. 4.


Fig. 4


Fig. 5
Q. No 5 Determine the distance $\bar{H}$ from the bottom of the base to the mass center of the bracket casting (Fig. 5).
Q. No 6 Determine the rectangular radii of gyration of the shaded area (Fig. 6) about the axes shown.


Fig. 6


Fig. 7

Section 3: Assignment
Q. No 7 Determine the y coordinate of the centroid of the area shown in Fig. 7 by direct integration.
Q. No 8 Find the $\bar{z}$ from the vertex of the right circular cone to the centroid of its volume (Fig. 8)


Fig. 8


Fig. 9


Fig. 10
Q. No 9 By direct integration, determine the coordinate of the centroid of the trapezoidal area shown in Fig. 9.
Q. No 10 Locate the centroid of the plane area shown in Fig 10.

