Q. No. 1 The press shown in Fig. 1 is used to emboss a small seal at E. Knowing that the coefficient of static friction between the vertical guide and the embossing die D is 0.30 , determine the force exerted by the die on the seal.

SOLUTION

Free body: Member $A B C$

$$
\begin{gathered}
+\Sigma M_{A}=0: \quad F_{B D} \cos 20^{\circ}(100 \mathrm{~mm})+F_{B D} \sin 20^{\circ}(173.205 \mathrm{~mm}) \\
-(250 \mathrm{~N})(100+386.37 \mathrm{~mm})=0 \\
F_{B D}=793.639 \mathrm{~N}
\end{gathered}
$$

Free body: Die D

$$
\begin{aligned}
\phi_{s} & =\tan ^{-1} \mu_{s} \\
& =\tan ^{-1} 0.3 \\
& =16.6992^{\circ}
\end{aligned}
$$

Force triangle:

$$
\begin{aligned}
\frac{D}{\sin 53.301^{\circ}} & =\frac{793.639 \mathrm{~N}}{\sin 106.6992^{\circ}} \\
D & =664.347 \mathrm{~N}
\end{aligned}
$$

$\mathbf{D}=664 \mathrm{~N} \downarrow \boldsymbol{\iota}$
Q. No. 2 The vertical position of the 100 Kg block is adjusted by the screw activated wedge shown in Fig. 2. Calculate the moment M which must be applied to the handle of the screw to raise the block. The single threaded screw has square threads with a mean diameter of 30 mm and advances 10 mm for each complete turn. The coefficient of friction for the screw treads is 0.25 , and the coefficient of friction for all mating surfaces of the block and wedge is 0.40 . Neglect friction at the ball at joint A.

SOLUTION:

Q. No. 3 The truck shown in Fig. 3 is used to deliver food to aircraft. The elevated unit has a mass of 1000 kg with center of mass at G . Determine the required force in the hydraulic cylinder AB.

SOLUTION:

CH:

$$
\begin{align*}
\sum F_{x}=0: & C_{x}+E_{x}=0 \tag{1}\\
\sum F_{y}=0: & F_{A B}+E_{y}+\frac{1000(9.81)}{2}-\frac{1000(9.81)}{2}=0 \tag{2}\\
F_{+} \sum M_{C}=0: & F_{A B}(1000)+E_{y}(1425)+E_{x}(1350) \\
& +\frac{1000(9.81)}{2}(2850)=0 \tag{3}
\end{align*}
$$

DE:

$$
\begin{align*}
\sum F_{x}=0: & F_{x}-E_{x}=0 \tag{4}\\
\sum F_{y}=0: & \left(\text { same as } E_{q} \cdot(2)\right) \\
+\sum M_{F}=0: & -F_{A B}(1000)-E y(1425)+E_{x}(1350) \\
& -\frac{1000(9.81)}{2}(2850)=0 \tag{5}
\end{align*}
$$

Solution: $F_{A B}=32.9 \mathrm{kN}$
4. Find the support reactions and draw the SFD \& BMD for the following structure. Given that the intensity of the UDL is ω per unit length and the point loads P are acting at the quarter points in the span BC which has an internal hinge. Also locate the max SF, BM and Point of Contra Flexure, if any.

Figure 1

SOLUTION

In span EC
$R_{E}=R_{C}=0.5 P$

Moment about B (clockwise +ve)
$M_{B}=R_{A} \times 2 L-w L \times 1.5 L+P \times 0.5 L+0 . P \times L=0 ; \quad R_{A}=0.75 w L-0.5 P$
$R_{B}=(0.5 P+w L+P)-R_{A}=(0.5 P+w L+P)-(0.75 w L+0.5 P)=w L+2 P$
Sign convention for BM and SF

$$
(\uparrow \boxed{+} \downarrow)
$$

x is any distance right from A

Span AC

$R_{x}=R_{A}-w x=0.75 w L-0.5 P-w x ; \quad R_{x=L}=-0.25 w L-0.5 P$
$M_{x}=R_{A} x-0.5 w x^{2}=(0.75 w L-0.5 P) x-0.5 w x^{2} ; \quad M_{x=L}=0.25 w L^{2}-0.5 P L$
Span AB
$R_{x}=0.75 w L-0.5 P-w L=-0.25 w L-0.5 P$
$M_{x}=R_{A} x-w L(x-0.5 L)^{2}=(0.75 w L-0.5 P) x-w L(x-0.5 L)^{2} ;$
$M_{x=2 L}=1.5 w L^{2}-P L-2.25 w L^{2}=-0.75 w L^{2}-P L$

Span AD

$R_{x}=R_{A}-w L+R_{B}=0.75 w L-0.5 P-w L+2 P+0.25 w L=1.5 P$
$M_{x}=R_{A} x-w L(x-0.5 L)^{2}+R_{B}(x-2 L)$ $=(0.75 w L-0.5 P) x-w L(x-0.5 L)^{2}+(0.25 w L+2 P)(x-2 L) ;$
$M_{x=2.5 L}=(0.75 w L-0.5 P) 2.5 L-w L(2.5 L-0.5 L)^{2}+(0.25 w L+2 P)(2.5 L-2 L)$ $=-2 w L^{2}-0.25 P L$

Span AE

$R_{x}=R_{A}-w L+R_{B}=0.75 w L-0.5 P-w L+0.25 w L+2 P-P=0.5 P$
$M_{x}=R_{A} x-w L(x-0.5 L)^{2}+R_{B}(x-2 L)-P(x-2.5 L)$

$$
=(0.75 w L-0.5 P) x-w L(x-0.5 L)^{2}+(0.25 w L+2 P)(x-2 L)-P(x-2.5 L)
$$

$M_{x=3 L}=2.25 w L^{2}-1.5 P L-6.25 w L^{2}+0.25 w L^{2}+2 P L-0.5 P L=-3.75 w L^{2}$

Span EC

Here, x considered any distance right from E
When $x<0.5 L$
$R_{x}=0.5 P \quad$ and $\quad M_{x}=0.5 P x ; \quad M_{x=0.5 L}=0.25 P L$
When $x>0.5 L$
$R_{x}=0.5 P-P=-0.5 P$ and $\quad M_{x}=0.5 P x-P(x-0.5 L) ; \quad M_{x=L}=0.5 P L-P(0.5 L)=0$

Point of contra Flexure

In span CB, assume distance y right from C

$$
\begin{aligned}
\frac{0.25 w L^{2}-0.5 P L}{y}=\frac{-0.75 w L^{2}-P L}{L-y} ; \frac{L-y}{y} & =\frac{0.75 w L^{2}+P L}{0.5 P L-0.25 w L^{2}} ; \frac{L}{y}=\frac{2 w L+3 P}{2 P-w L} ; \\
y & =\left(\frac{2 P-w L}{2 w L+3 P}\right) L
\end{aligned}
$$

In span In span EF, assume distance z right from E

$$
\begin{array}{r}
-\frac{3.75 w L^{2}}{z}=\frac{0.25 P L}{\frac{L}{2}-z} ; \quad \frac{L}{2 z}-1=-\frac{0.25 P L}{3.75 w L^{2}} ; \frac{2 z}{L}=\frac{15 w L}{15 w L-P} \\
z=\left(\frac{15 w L}{15 w L-P}\right) \frac{L}{2}
\end{array}
$$

$\mathrm{Max} \mathrm{SF}=1.5 P$ and $\mathrm{BM}=-3.75 w L^{2}$

Q. No. 5 Calculate the forces in members CD and CG of the loaded truss composed shown in Fig. 5 of equilateral triangles, each of side length 8 m .
SOLUTION:

$$
\begin{gathered}
\sum M_{J}=0:-3(16)+D(28)-\left(5 \sin 30^{\circ}\right)(48)=0 \\
D=6 \mathrm{kN}
\end{gathered}
$$

$$
\begin{aligned}
& \Sigma F_{y}=0: C G \sin 60^{\circ}+6-5 \sin 30^{\circ}=0 \\
& \frac{C G=-4.041 \mathrm{kN} \mathrm{C}}{C D} \\
& \Sigma M_{G}=0:\left.C D \sin 60^{\circ}\right)+6(4) \\
&-\left(5 \sin 30^{\circ}\right)(24)=0, \quad C D=5.20 \mathrm{kN}
\end{aligned}
$$

