- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) Let $\mathbb{P}(\mathbb{R})$ be the space of all polynomials with coefficients in \mathbb{R} . Does there exist a norm $\|\cdot\|$ on $\mathbb{P}(\mathbb{R})$ such that $(\mathbb{P}(\mathbb{R}), \|.\|)$ is a Banach space?
 - (b) Let $C_c(\mathbb{R})$ be the class of all compactly supported continuous functions on \mathbb{R} . Does the linear functional given by $T(f) = \int_{-\infty}^{\infty} f(t)dt$ is continuous in $(C_c(\mathbb{R}), \|\cdot\|_{\infty})$? Whether T is continuous in $(C_c(\mathbb{R}), \|\cdot\|_1)$?
 - (c) Let X and Y be two normed linear spaces. If $T : X \to Y$ is a linear map that satisfying $\inf\{||Tx||: ||x|| = 1\} > 0$. Does it imply that T is injective?
 - (d) Let X and Y be two normed linear spaces. Suppose $T \in B(X, Y)$ is open and injective. Does it imply that T is invertible?
 - (e) Whether the identity linear transformation $I: (l^1, \|\cdot\|_1) \to (l^1, \|\cdot\|_\infty)$ is a closed map?
- 2. Show that every infinite-dimensional separable normed linear space contains a countable linearly independent dense subset.
- 3. Let X be a separable Banach space. Prove that there exists a closed subspace M of l^1 such that X is isomorphic to l^1/M .
- 4. Prove that an infinite dimensional Banach space X can not be expressed as the countable union of compact subsets of X.
- 5. Let $f \in C^{\infty}(\mathbb{R})$ be such that for each $t \in \mathbb{R}$, there exists $n_t \in \mathbb{N}$ satisfying $f^{(n_t)}(t) = 0$. Show that there some interval (a, b) and polynomial p(x) such that f(t) = p(t) for all $t \in (a, b)$.
- 6. Let X, Y be normed linear spaces and let $T : X \to Y$ and $S : X \to Y$ be linear maps. Let $x_0 \in X$ and r > 0 such that Tx = Sx for all $x \in B_r(x_0)$. Show that T = S.
- 7. Let X, Y be normed linear spaces and let $T : X \to Y$ be linear such that $\{Tx : x \in X, ||x|| < 1\}$ is an open set in Y. If G is an open set in X, then show that T(G) is an open set in Y.
- 8. Let X, Y be normed linear spaces and let $T: X \to Y$ be a linear map. Show that the following statements are equivalent.
 - (a) T is bounded.
 - (b) For every Cauchy sequence (x_n) in X, (Tx_n) is a Cauchy sequence in Y.
 - (c) For every nonempty bounded open subset G of X, T(G) is a bounded subset of Y.
- 9. Let X, Y be normed linear spaces and let $T: X \to Y$ be a linear map. If T(G) is a bounded subset of Y for some nonempty open subset G of X, then show that T is continuous.
- 10. Let X, Y be normed linear spaces and let $T : X \to Y$ be a linear map such that $\{x \in X : \|Tx\| < 1\}^0 \neq \emptyset$. Show that T is continuous.
- 11. Let X, Y be normed linear spaces and let $T : X \to Y$ be linear. If T(K) is a bounded set in Y for every compact set K in X, then show that T is continuous.
- 12. Let $T_n : l^1 \to l^1$ be a sequence of linear transformations such that for each $x = (x_n) \in l^1$, $T_n(x_1, x_2, \ldots) = (x_{n+1}, x_{n+2}, \ldots)$. Show that $||T_n(x)|| \to 0$ but $||T_n|| = 1$.

- 13. For $f \in C^1[0,1]$, define its norm by $||f|| = \max\{||f||_{\infty}, ||f'||_{\infty}\}$. Show that the linear map $T: (C^1[0,1], ||.||) \to (C[0,1], ||.||_{\infty})$ given by T(f) = f' is continuous and ||T|| = 1.
- 14. Let X, Y be normed linear spaces and let $T : X \to Y$ be a linear map. If for every absolutely convergent series $\sum_{n=1}^{\infty} x_n$ in X, $\sum_{n=1}^{\infty} Tx_n$ is a convergent series in Y, then show that T is bounded.
- 15. For $1 \le p \le \infty$, define a linear map on $l^p(\mathbb{N})$ by $T(x) = (x_1, \frac{x_2}{2}, \frac{x_3}{3}, \ldots)$. Find ||T||.
- 16. Let $X = (C[0,1], \|\cdot\|_{\infty})$. For $f \in C[0,1]$ define $K(f)(t) = \int_{0}^{t} f(s)ds$. Show that
 - (a) K is one one but not onto.
 - (b) For each $n \in \mathbb{N}$, the power of operator K satisfies $||K^n|| = \frac{1}{n!}$.
 - (c) Operator T = I + K is invertible.
- 17. Let $X = (C[0,\pi], \|\cdot\|_{\infty})$. For $f \in C[0,\pi]$ define $T(f)(x) = \int_0^x \sin(x+y)f(y)dy$. Find $\|T\|$.
- 18. Let $T : (L^1[0,1], \|\cdot\|_1) \to (C[0,1], \|\cdot\|_\infty)$ be the linear transformation defined by $T(f)(x) = \int_0^x e^{-t^2} f(t) dt$. Show that T satisfies the condition $\frac{1}{3} \le \|T\| \le 1$.
- 19. Let X be a Banach space. If the sequence $T_n \in B(X, X)$ converges to T such that T_n^{-1} exists and bounded in B(X, X). Then show that T is invertible.
- 20. Let X and Y be two Banach spaces and $T: X \to Y$ is a continuous linear bijection. Then show that $\inf\{\|x\|: x \in X, \|Tx\| = 1\} \leq \|T^{-1}\|$. Does equality hold?
- 21. Let $\phi \in L^{\infty}(\mathbb{R})$. For $1 \leq p < \infty$, define an operator on $L^{p}(\mathbb{R}^{n})$ by $M_{\phi}(f) = \phi f$. Show that $\|M_{\phi}\| = \|\phi\|_{\infty}$. Whether the conclusion is true for $p = \infty$?
- 22. Let M be a closed subspace of a normed linear space X. Show that the projection $\pi : X \to X/M$ defined by $\pi(x) = x + M$ is a continuous linear surjective open map with $\|\pi\| < 1$. If $M \subsetneq X$ then $\|\pi\| = 1$.
- 23. Let $X = \{f \in C[0,1]: f(0) = 0\}$ and $M = \{f \in X: \int_0^1 f(t)dt = 0\}$. Show that (a) M is an infinite dimensional closed subspace of X.
 - (b) There does not exists any $f \in X$ with $||f||_{\infty} = 1$ such that dist(f, M) = 1.
- 24. Let X and Y be two Banach spaces and $T \in B(X, Y)$. Show that followings are equivalent:
 - (a) T is injective and has closed range.
 - (b) There is $k \ge 0$ such that $||x|| \le k ||T(x)||$ for all $x \in X$.
- 25. Let X and Y be two normed linear spaces and $T: X \to Y$ such that dim $T(X) < \infty$ and ker T is closed. Then show that T is bounded.
- 26. Suppose X can be made Banach space with respect to norms $\|\cdot\|_1$ and $\|\cdot\|_2$. If there exists m > 0 such that $\|x\|_1 \le m \|x\|_2$ for all $x \in X$. Then both norms are equivalent.
- 27. Let X be a Banach space and Y be a normed linear space. Suppose $T_n \in B(X, Y)$ such that $\lim_{n \to \infty} T_n(x)$ exists for each $x \in X$. Write $T(x) = \lim_{n \to \infty} T_n(x)$. Show that T is bounded.
- 28. Let (a_n) be a sequence of real numbers such that for each $x = (x_n) \in l^2$, the sequence $(a_n x_n) \in l^2(\mathbb{N})$. Define an operator T on l^2 by $T(x_1, x_2, \ldots) = (a_1 x_1, a_2 x_2, \ldots)$. Show that T is bounded.

- 29. Let X and Y be two normed linear spaces and $T_n, T \in B(X, Y)$ such that $T_n \to T$. Suppose $x_n \to x$. Then show that $T_n x_n \to T x$ in Y.
- 30. Let X be a Banach space and let $T \in B(X)$ with ||T|| < 1. Then show that I T is invertible and $(I T)^{-1} = \sum_{n=0}^{\infty} T^n \in B(X)$.
- 31. Let (T_n) be a sequence of bounded linear operator on a Banach space X such that $||T_n T|| \to 0$. If T_n^{-1} exists, $\forall n \in \mathbb{N}$ and $||T_n^{-1}|| < 1$, then prove that $T^{-1} \in B(X)$.
- 32. Let X and Y be two normed linear spaces and $T \in B(X, Y)$ sends each open subset in X to an open subset in Y. Prove that T is onto.
- 33. Let $T: (C^1[0,1], \| . \|_{\infty}) \to (C[0,1], \| . \|_{\infty})$ be a linear transformation that defined by $Tf(s) = f'(s) + \int_{0}^{s} f(t)dt$. Show that the graph of T is closed but T is not continuous.