- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If $f((x_n)) = \sum_{n=1}^{\infty} \frac{x_n}{\sqrt{n}}$ for all $(x_n) \in \ell^1$, then the linear functional $f : (\ell^1, \|\cdot\|_2) \to \mathbb{K}$ is continuous.
 - (b) If X is a normed linear space and $f \in X^*$, then $\{x \in X : f(x) \neq 1\}$ must be dense in X.
- 2. Let f be a linear functional on a normed linear space X. Then f is bounded if and only if ker f is closed.
- 3. Let X^* denote the dual space of a normed linear space X. For $x \in X$, show that $||x|| = \sup\{|f(x)|: f \in X^* \text{ and } ||f|| = 1\}.$
- 4. Let $1 \le p < \infty$. Define a linear map $T : l^p \to l^p$ by $T(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$. Find the adjoint operator T^* of T.
- 5. Show that the linear map $T: (C^1[0,1], \|.\|) \to (C[0,1], \|.\|)$ defined by (Tf)(t) = f'(t) does not have the continuous adjoint.
- 6. Let X and Y be two normed linear spaces. Suppose $T \in B(X, Y)$. Show that $T^* \in B(Y^*, X^*)$ and $||T^*|| = ||T||$.
- 7. Let $1 \le p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. For $f \in L^p(\mathbb{R})$, prove that

$$||f||_p = \sup\left\{ \left| \int_{\mathbb{R}} f(x)g(x)dx \right| : g \in L^q(\mathbb{R}) \text{ and } ||g||_q = 1 \right\}.$$

- 8. Define a family of linear functionals $f_n : c_o(\mathbb{N}) \to \mathbb{C}$ by $f_n(x) = \frac{1}{n} \sum_{j=1}^n x_j$. Show that $\lim_{n \to \infty} f_n(x) = 0$ but $||f_n|| = 1$.
- 9. Let c_o be the space of all sequences on \mathbb{C} that converges to 0. Show that the dual of $(c_o, \|\cdot\|_{\infty})$ is isomorphic to $(l^1, \|\cdot\|_1)$
- 10. Let Y be a proper dense subspace of a normed linear space X. Show that the identity operator on Y cannot be extended as a continuous operator from Y to X.
- 11. Let M be a proper subspace of a normed linear space X. Suppose $dist(x_o, M) = \delta > 0$ for some $x_o \notin M$. Prove that there exists $f \in X^*$ such that ||f|| = 1, $f(x_o) = \delta$ and f(x) = 0for all $x \in M$. Does such f exist uniquely?
- 12. Let $T: l^2 \to l^2$ be a linear map such that $T(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$. Find the adjoint T^* of T.
- 13. Let $M = \{(y_1, y_2, \ldots) \in l^2 : 2y_1 y_2 = 0\}$ and $x_o = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$. Find $y_o \in M$ such that $\operatorname{dist}(x_o, M) = ||x_o y_o||_2$.
- 14. Let $\{e_1, e_2, \ldots, e_n\}$ be a linearly independent set in an infinite dimensional normed linear space X. For $(a_1, a_2, \ldots, a_n) \in \mathbb{C}^n$, prove that there exists $f \in X^*$ such that $f(e_j) = a_j$, for $j = 1, 2, \ldots, n$.
- 15. Suppose the sequence $g_n \in L^2[0,1]$ is defined by

$$g_n(t) = \begin{cases} \sqrt{n} & \text{if } 0 \le t < 1/n, \\ 0 & \text{if } 1/n \le t \le 1. \end{cases}$$

Show that $||g_n||_2 = 1$ and g_n converges weakly to 0.

- 16. For $f \in L^2[-\pi,\pi]$, define a sequence (φ_n) of linear functionals by $\varphi_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt$. Show that $\|\varphi_n\| = 1$ and $\varphi_n(f) \to 0$.
- 17. Let c_o be the space of all sequences converging to zero. Show that $(c_o)^* = l^1$ and $(c_o)^{**} = l^{\infty}$. Further, for $x = (x_n) \in c_o$, show that $x \mapsto \sum_{1}^{\infty} x_n$ is weakly continuous but not weak^{*} continuous.
- 18. Let X and Y be two Banach spaces and $T_n, T \in B(X, Y)$. If $T_n \to T$ weakly. Show that $\sup ||T_n|| < \infty$.
- 19. Let $X = (C[0,1], \|\cdot\|_{\infty})$. Define a map $T : X \to \mathbb{C}$ by $T(f) = \int_{0}^{1} tf(t)dt$, for all $f \in X$. Find a vector $f \in X$ such that $T(f) = \|T\|$.
- 20. Suppose X and Y be two Banach spaces and $T: X \to Y$ such that $f \circ T \in X^*$, for all $f \in Y^*$. Show that T is continuous.
- 21. Let X and Y be two normed linear spaces. For T ∈ B(X,Y), define T* : Y* → X* by T*(f) = f ∘ T, for all f ∈ Y*. Show that
 (a) ker T* = (ImT)[⊥].
 (b) T is bijective then T* is bijective.
- 22. Let X and Y be two Banach spaces. Suppose $S : X \to Y$ and $T : Y^* \to X^*$ be linear maps satisfying $f \circ S = T(f)$, for all $f \in Y^*$. Show that S is continuous. (Hint: use close graph theorem).
- 23. Let X and Y be two Banach spaces and $T \in B(X, Y)$ be such that range $\mathcal{R}(T)$ is closed. Prove that $\mathcal{R}(T^*) = (\ker T)^{\perp}$, where $M^{\perp} = \{f \in X^* : f(x) = 0, \forall x \in M\}$, for $M \subseteq X$.
- 24. Let X be a reflexive Banach space and $f \in X^*$. Show that there exists $x \in \overline{B(0,1)}$ such that f(x) = ||f||.
- 25. Let K be a closed bounded convex subset of a reflexive Banach space X. Prove that K is weakly compact.
- 26. Suppose M is a subspace of a Banach space X. Then M^{\perp} is weak^{*} closed subspace of X^* .
- 27. Let X be a normed linear space and let $f(\neq 0) \in X^*$. If $x_0 \in X$ and if $\alpha \in \mathbb{K}$, then show that $d(x_0, \{x \in X : f(x) = \alpha\}) = \frac{|f(x_0) \alpha|}{\|f\|}$.
- 28. Let $Y = \{(x, y) \in \mathbb{R}^2 : 2x y = 0\}$ and let g(x, y) = x for all $(x, y) \in Y$. Determine all the Hahn-Banach extensions of g to $(\mathbb{R}^2, \|\cdot\|_2)$.
- 29. Let (x_n) be a sequence in a Banach space X and let (f_n) be a sequence in X^* . Prove the following:
 - (a) If $x_n \xrightarrow{w} x \in X$, then (x_n) is bounded and $||x|| \leq \liminf_{n \to \infty} ||x_n||$.
 - (b) If $f_n \xrightarrow{w^*} f \in X^*$, then (f_n) is bounded and $||f|| \leq \liminf_{n \to \infty} ||f_n||$.
- 30. Let X be a Banach space, let $x \in X$ and let $f \in X^*$. If (x_n) is a sequence in X such that $x_n \to x$ and if (f_n) is a sequence in X^* such that $f_n \xrightarrow{w^*} f$, then show that $f_n(x_n) \to f(x)$.