Assignment 3

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) If $f\left(\left(x_{n}\right)\right)=\sum_{n=1}^{\infty} \frac{x_{n}}{\sqrt{n}}$ for all $\left(x_{n}\right) \in \ell^{1}$, then the linear functional $f:\left(\ell^{1},\|\cdot\|_{2}\right) \rightarrow \mathbb{K}$ is continuous.
(b) If X is a normed linear space and $f \in X^{*}$, then $\{x \in X: f(x) \neq 1\}$ must be dense in X.
2. Let f be a linear functional on a normed linear space X. Then f is bounded if and only if ker f is closed.
3. Let X^{*} denote the dual space of a normed linear space X. For $x \in X$, show that $\|x\|=$ $\sup \left\{|f(x)|: f \in X^{*}\right.$ and $\left.\|f\|=1\right\}$.
4. Let $1 \leq p<\infty$. Define a linear map $T: l^{p} \rightarrow l^{p}$ by $T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$. Find the adjoint operator T^{*} of T.
5. Show that the linear map $T:\left(C^{1}[0,1],\|\cdot\|\right) \rightarrow(C[0,1],\|\cdot\|)$ defined by $(T f)(t)=f^{\prime}(t)$ does not have the continuous adjoint.
6. Let X and Y be two normed linear spaces. Suppose $T \in B(X, Y)$. Show that $T^{*} \in B\left(Y^{*}, X^{*}\right)$ and $\left\|T^{*}\right\|=\|T\|$.
7. Let $1 \leq p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. For $f \in L^{p}(\mathbb{R})$, prove that

$$
\|f\|_{p}=\sup \left\{\left|\int_{\mathbb{R}} f(x) g(x) d x\right|: g \in L^{q}(\mathbb{R}) \text { and }\|g\|_{q}=1\right\}
$$

8. Define a family of linear functionals $f_{n}: c_{o}(\mathbb{N}) \rightarrow \mathbb{C}$ by $f_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} x_{j}$. Show that $\lim _{n \rightarrow \infty} f_{n}(x)=0$ but $\left\|f_{n}\right\|=1$.
9. Let c_{o} be the space of all sequences on \mathbb{C} that converges to 0 . Show that the dual of $\left(c_{o},\|\cdot\|_{\infty}\right)$ is isomorphic to $\left(l^{1},\|\cdot\|_{1}\right)$
10. Let Y be a proper dense subspace of a normed linear space X. Show that the identity operator on Y cannot be extended as a continuous operator from Y to X.
11. Let M be a proper subspace of a normed linear space X. Suppose $\operatorname{dist}\left(x_{o}, M\right)=\delta>0$ for some $x_{o} \notin M$. Prove that there exists $f \in X^{*}$ such that $\|f\|=1, f\left(x_{o}\right)=\delta$ and $f(x)=0$ for all $x \in M$. Does such f exist uniquely?
12. Let $T: l^{2} \rightarrow l^{2}$ be a linear map such that $T\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$. Find the adjoint T^{*} of T.
13. Let $M=\left\{\left(y_{1}, y_{2}, \ldots\right) \in l^{2}: 2 y_{1}-y_{2}=0\right\}$ and $x_{o}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)$. Find $y_{o} \in M$ such that $\operatorname{dist}\left(x_{o}, M\right)=\left\|x_{o}-y_{o}\right\|_{2}$.
14. Let $\left\{e_{1}, e_{2} \ldots, e_{n}\right\}$ be a linearly independent set in an infinite dimentional normed linear space X. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$, prove that there exists $f \in X^{*}$ such that $f\left(e_{j}\right)=a_{j}$, for $j=1,2, \ldots, n$.
15. Suppose the sequence $g_{n} \in L^{2}[0,1]$ is defined by

$$
g_{n}(t)= \begin{cases}\sqrt{n} & \text { if } 0 \leq t<1 / n \\ 0 & \text { if } 1 / n \leq t \leq 1\end{cases}
$$

Show that $\left\|g_{n}\right\|_{2}=1$ and g_{n} converges weakly to 0 .
16. For $f \in L^{2}[-\pi, \pi]$, define a sequence $\left(\varphi_{n}\right)$ of linear functionals by $\varphi_{n}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t$. Show that $\left\|\varphi_{n}\right\|=1$ and $\varphi_{n}(f) \rightarrow 0$.
17. Let c_{o} be the space of all sequences converging to zero. Show that $\left(c_{o}\right)^{*}=l^{1}$ and $\left(c_{o}\right)^{* *}=l^{\infty}$. Further, for $x=\left(x_{n}\right) \in c_{o}$, show that $x \mapsto \sum_{1}^{\infty} x_{n}$ is weakly continuous but not weak* continuous.
18. Let X and Y be two Banach spaces and $T_{n}, T \in B(X, Y)$. If $T_{n} \rightarrow T$ weakly. Show that $\sup \left\|T_{n}\right\|<\infty$.
19. Let $X=\left(C[0,1],\|\cdot\|_{\infty}\right)$. Define a map $T: X \rightarrow \mathbb{C}$ by $T(f)=\int_{0}^{1} t f(t) d t$, for all $f \in X$. Find a vector $f \in X$ such that $T(f)=\|T\|$.
20. Suppose X and Y be two Banach spaces and $T: X \rightarrow Y$ such that $f \circ T \in X^{*}$, for all $f \in Y^{*}$. Show that T is continuous.
21. Let X and Y be two normed linear spaces. For $T \in B(X, Y)$, define $T^{*}: Y^{*} \rightarrow X^{*}$ by $T^{*}(f)=f \circ T$, for all $f \in Y^{*}$. Show that
(a) $\operatorname{ker} T^{*}=(\operatorname{Im} T)^{\perp}$.
(b) T is bijective then T^{*} is bijective.
22. Let X and Y be two Banach spaces. Suppose $S: X \rightarrow Y$ and $T: Y^{*} \rightarrow X^{*}$ be linear maps satisfying $f \circ S=T(f)$, for all $f \in Y^{*}$. Show that S is continuous. (Hint: use close graph theorem).
23. Let X and Y be two Banach spaces and $T \in B(X, Y)$ be such that range $\mathcal{R}(T)$ is closed. Prove that $\mathcal{R}\left(T^{*}\right)=(\operatorname{ker} T)^{\perp}$, where $M^{\perp}=\left\{f \in X^{*}: f(x)=0, \forall x \in M\right\}$, for $M \subseteq X$.
24. Let X be a reflexive Banach space and $f \in X^{*}$. Show that there exists $x \in \overline{B(0,1)}$ such that $f(x)=\|f\|$.
25. Let K be a closed bounded convex subset of a reflexive Banach space X. Prove that K is weakly compact.
26. Suppose M is a subspace of a Banach space X. Then M^{\perp} is weak ${ }^{*}$ closed subspace of X^{*}.
27. Let X be a normed linear space and let $f(\neq 0) \in X^{*}$. If $x_{0} \in X$ and if $\alpha \in \mathbb{K}$, then show that $d\left(x_{0},\{x \in X: f(x)=\alpha\}\right)=\frac{\left|f\left(x_{0}\right)-\alpha\right|}{\|f\|}$.
28. Let $Y=\left\{(x, y) \in \mathbb{R}^{2}: 2 x-y=0\right\}$ and let $g(x, y)=x$ for all $(x, y) \in Y$. Determine all the Hahn-Banach extensions of g to $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$.
29. Let $\left(x_{n}\right)$ be a sequence in a Banach space X and let $\left(f_{n}\right)$ be a sequence in X^{*}. Prove the following:
(a) If $x_{n} \xrightarrow{w} x \in X$, then $\left(x_{n}\right)$ is bounded and $\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$.
(b) If $f_{n} \xrightarrow{w^{*}} f \in X^{*}$, then $\left(f_{n}\right)$ is bounded and $\|f\| \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|$.
30. Let X be a Banach space, let $x \in X$ and let $f \in X^{*}$. If $\left(x_{n}\right)$ is a sequence in X such that $x_{n} \rightarrow x$ and if $\left(f_{n}\right)$ is a sequence in X^{*} such that $f_{n} \xrightarrow{w^{*}} f$, then show that $f_{n}\left(x_{n}\right) \rightarrow f(x)$.

