MA 101S (Mathematics I, Calculus)

Assignment 1A

1. Let $\left(x_{n}\right)$ be a convergent sequence of positive real numbers such that $\lim _{n \rightarrow \infty} x_{n}<1$. Show that $\lim _{n \rightarrow \infty} x_{n}^{n}=0$.
2. Let $\left(x_{n}\right)$ be a convergent sequence in \mathbb{R} with limit $\ell \in \mathbb{R}$ and let $\alpha \in \mathbb{R}$.
(a) If $x_{n}>\alpha$ for all $n \in \mathbb{N}$, then show that $\ell \geq \alpha$.
(b) If $\ell>\alpha$, then show that there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>\alpha$ for all $n \geq n_{0}$.
(Note that ℓ can be equal to α in (a).)
3. For $\alpha \in \mathbb{R}$, examine whether $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}([\alpha]+[2 \alpha]+\cdots+[n \alpha])$ exists (in \mathbb{R}). Also, find the value if it exists.
(For each $x \in \mathbb{R},[x]$ denotes the greatest integer not exceeding x.)
4. Let $x_{1}=6$ and $x_{n+1}=5-\frac{6}{x_{n}}$ for all $n \in \mathbb{N}$. Examine whether the sequence $\left(x_{n}\right)$ is convergent. Also, find $\lim _{n \rightarrow \infty} x_{n}$ if $\left(x_{n}\right)$ is convergent.
5. Let $\left(x_{n}\right)$ be a sequence of nonzero real numbers. If $\left(x_{n}\right)$ does not have any convergent subsequence, then show that $\lim _{n \rightarrow \infty} \frac{1}{x_{n}}=0$.
6. Examine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ is convergent.
7. Let $x_{n}>0$ for all $n \in \mathbb{N}$. Show that the series $\sum_{n=1}^{\infty} x_{n}$ converges iff the series $\sum_{n=1}^{\infty} \frac{x_{n}}{1+x_{n}}$ converges.
8. Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{n}}{2^{n} n^{2}}$ converges.
9. If $\alpha(\neq 0) \in \mathbb{R}$, then show that the series $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{\alpha}{n}\right)$ is conditionally convergent.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{cl}x & \text { if } x \in \mathbb{Q}, \\ {[x]} & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{array}\right.$

Determine all the points of \mathbb{R} where f is continuous.
11. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous such that $f(0)=f(1)$. Show that
(a) there exist $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1}-x_{2}=\frac{1}{2}$.
(b) there exist $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1}-x_{2}=\frac{1}{3}$.
(In fact, if $n \in \mathbb{N}$, then there exist $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1}-x_{2}=\frac{1}{n}$. However, it is not necessary that there exist $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1}-x_{2}=\frac{2}{5}$.)
12. Let p be an odd degree polynomial with real coefficients in one real variable. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded continuous function, then show that there exists $x_{0} \in \mathbb{R}$ such that $p\left(x_{0}\right)=g\left(x_{0}\right)$.
(In particular, this shows that
(a) every odd degree polynomial with real coefficients in one real variable has at least one real zero.
(b) the equation $x^{9}-4 x^{6}+x^{5}+\frac{1}{1+x^{2}}=\sin 3 x+17$ has at least one real root.
(c) the range of every odd degree polynomial with real coefficients in one real variable is \mathbb{R}.)
13. Does there exist a continuous function from $(0,1]$ onto \mathbb{R} ? Justify.
14. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on $(-\delta, \delta)$ for some $\delta>0$ and let $f^{\prime \prime}(0)$ exist (in $\left.\mathbb{R}\right)$. If $f\left(\frac{1}{n}\right)=0$ for all $n \in \mathbb{N}$, then find $f^{\prime}(0)$ and $f^{\prime \prime}(0)$.
15. For $n \in \mathbb{N}$, show that the equation $1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\cdots+(-1)^{n} \frac{x^{n}}{n}=0$ has exactly one real root if n is odd and has no real root if n is even.
16. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(0)=f(1)=0$ and $f^{\prime}(0)>0, f^{\prime}(1)>0$. Show that there exist $c_{1}, c_{2} \in(0,1)$ with $c_{1} \neq c_{2}$ such that $f^{\prime}\left(c_{1}\right)=f^{\prime}\left(c_{2}\right)=0$.
17. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f^{\prime \prime}(c)$ exists (in \mathbb{R}), where $c \in \mathbb{R}$. Show that $\lim _{h \rightarrow 0} \frac{f(c+h)-2 f(c)+f(c-h)}{h^{2}}=f^{\prime \prime}(c)$.
Give an example of an $f: \mathbb{R} \rightarrow \mathbb{R}$ and a point $c \in \mathbb{R}$ for which $f^{\prime \prime}(c)$ does not exist (in \mathbb{R}) but the above limit exists (in \mathbb{R}).
18. Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}1 & \text { if } x=\frac{1}{n} \text { for some } n \in \mathbb{N} \text {, } \\ 0 & \text { otherwise. }\end{cases}$

Show that f is Riemann integrable on $[-1,1]$ and that $\int_{-1}^{1} f(x) d x=0$.
If $F(x)=\int_{-1}^{x} f(t) d t$ for all $x \in[-1,1]$, then show that $F:[-1,1] \rightarrow \mathbb{R}$ is differentiable, and in particular, $F^{\prime}(0)=f(0)$, although f is not continuous at 0 .
19. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous such that $f(x) \geq 0$ for all $x \in[a, b]$ and $\int_{a}^{b} f(x) d x=0$. Show that $f(x)=0$ for all $x \in[a, b]$.
(The above result need not be true if f is assumed to be only Riemann integrable on $[a, b]$.)
20. If $f:[0,1] \rightarrow \mathbb{R}$ is continuous, then show that $\int_{0}^{x}\left(\int_{0}^{u} f(t) d t\right) d u=\int_{0}^{x}(x-u) f(u) d u$ for all $x \in[0,1]$.
21. Examine whether the integral $\int_{0}^{\infty} \sin \left(x^{2}\right) d x$ is convergent.
22. Determine all real values of p for which the integral $\int_{0}^{\infty} \frac{x^{p-1}}{1+x} d x$ is convergent.
23. Find the area of the region that is inside the cardioid $r=a(1+\cos \theta)$ and
(a) inside the circle $r=\frac{3}{2} a$,
(b) outside the circle $r=\frac{3}{2} a$.
24. Find the length of the curve $y=\int_{0}^{x} \sqrt{\cos 2 t} d t, 0 \leq x \leq \frac{\pi}{4}$.

